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Background on DSB repair

DNA double-strand breaks (DSB) are generated in a 
random manner in the genome by exogenous agents, 
such as ionizing radiation (IR) or radiomimetic drugs. 
Endogenous events leading to accidental DSBs also include 
oxidative damage, replication fork collapse and telomere 
erosion. DSBs also occur as programmed events during 
meiosis, as well as during V(D)J recombination and class 
switch recombination (CSR) required for immunoglobulin 
diversity and function. Accidental or programmed DSBs, if 
left unrepaired or if repaired in an erroneous manner, can 
have severe adverse consequences for the genome including 
the generation of mutations and chromosomal aberrations. 
Both forms of genomic alterations are implicated in cell 
death (1,2), as well as in genomic instability leading to the 
development of cancer (3).

To maintain genomic integrity, cells have evolved several 
pathways to process DSBs and mitigate their adverse 

consequences. The two key DSB repair pathways engaged 
to this task are non-homologous end joining (NHEJ) and 
homologous recombination repair (HRR) (4-7). 

The classical or canonical form of NHEJ is a very fast 
process operating with half times of 10-30 min. It functions 
by simply joining the DNA ends and has no build-in 
potential of restoring the original sequence in the vicinity 
of the DSB (Figure 1). Essential components of NHEJ 
are the three subunits of the DNA-PK complex (Ku70, 
Ku80, DNA-PKcs), and the LIG4/XRCC4/XLF complex 
(8-12). As this pathway relies on the evolutionarily new 
DNA-PKcs, it is sometimes termed as D-NHEJ. However, 
the term classical or canonical NHEJ (C-NHEJ) is more 
frequently used and is also adopted here [reviewed in 
(7,13,14)]. 

C-NHEJ is error-prone on two counts: first, it has no 
build-in mechanisms ensuring the restoration of the original 
DNA sequence in the vicinity of the DSB. As a result, it 
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is associated with sequence alterations including random 
exchanges of nucleotides, as well as the addition or deletion 
of several base pairs at the junction. These events are more 
likely to occur during repair of radiation-induced DSBs, 
due to the end-processing requirement for the generation 
of ligatable DNA ends. Second, C-NHEJ has no build-
in mechanisms ensuring the restoration of the original 
DNA molecule and can in principle join any DNA ends 
irrespective of molecular origin. As a result, the generation 
of new sequence-combinations is possible, which in higher 
eukaryotes can manifest as chromosomal translocations. 
Possibly as a direct consequence of its operational speed, 
C-NHEJ is associated with more limited sequence 
alterations at the junction and has a lower probability 
of translocation formation than end-joining pathways 

operating with slower kinetics (see below). As a result, 
C-NHEJ is considered a guardian of genomic stability 
and suppressor of carcinogenesis (15-17). The molecular 
determinants underpinning the high speed of C-NHEJ 
remain uncharacterized.

In contrast to C-NHEJ, HRR operates with slower 
kinetics and requires a homologous template to not only 
repair the DSB, but to also restore the sequence around 
the break. Higher eukaryotes use the sister chromatid 
as a homologous template, and as a direct consequence 
HRR is restricted to the S and G2 phases of the cell cycle. 
Initial step in HRR is DNA nucleolytic end resection by 
the MRN complex (comprising Mre11, Rad50, Nbs1) 
along with other accessory proteins such as CtIP and the 
tumor suppressor protein BRCA1. An eminent role for 
the long-range resection have the Bloom helicase (BLM), 
Exonuclease 1 (Exo1) and Dna2 helicase/nuclease (Figure 2) 
(23-25). Thereby, terminal nucleotides in the 5' ends are 
removed generating long 3' single-stranded DNA (ssDNA) 
overhangs on both sides of the break. These 3'-ssDNA 
tails, representing the substrate for HR repair machinery, 
are coated and stabilized by the Replication protein A 
(RPA) complex, which subsequently becomes displaced 
by Rad51 recombinase generating Rad51 nucleoprotein 
filament. After homology search, strand invasion with 
the donor DNA and D-loop formation, a polymerase 
catalyzes DNA synthesis until finally the Holliday junctions 
become resolved, resulting in a crossover or non-crossover 
product (for a detailed description of this process and the 
participating proteins see in Figure 2) (22).

In addition to C-NHEJ and HRR, recent studies 
demonstrate the operation of a third pathway of DSB 
processing, functioning on simple end-joining principles, 
but repairing DSBs slower (t50 30 min to 20 h) than C-NHEJ 
(9,16,26-28). This repair pathway is considered to be an 
alternative form of NHEJ and is frequently abbreviated as 
A-NHEJ, or simply A-EJ (29). Since A-EJ is suppressed by 
C-NHEJ, and possibly also by HRR, and gains functional 
relevance when these standard repair processes fail, globally 
or locally, it is also considered to be a backup pathway and 
has been abbreviated as B-NHEJ (6,7). Throughout this 
review we will use the term A-EJ to refer to this repair 
pathway. 

Although A-EJ does not require homology for function, 
as for example HRR does, it is occasionally facilitated by 
microhomologies fortuitously found at the DNA ends, 
particularly when resection and the generation of single 
stranded DNA regions precedes end-joining. The form of 
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Figure 1 Canonical non-homologous end joining (C-NHEJ) 
pathway. C-NHEJ depends on Ku heterodimer and DNA-PK 
catalytic subunit (DNA-PKcs), which together form the DNA-PK 
holoenzyme. The DNA ends are processed by additional enzymes 
and rejoined by the LIG4/XRCC4/XLF complex
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Figure 2 The mechanism of homologous recombination repair (HRR). HRR requires a larger set of proteins than C-NHEJ. Once a DSB is 
shunted into HRR, end resection is initiated by the MRN complex and other accessory proteins including CtIP, BRCA1, BLM and Exo1. In 
this step, terminal nucleotides in the 5' ends are digested, resulting in 3' single-stranded DNA (ssDNA) overhangs, which are then covered 
by the Replication Protein A (RPA) trimer. RPA not only stabilizes ssDNA by preventing secondary structure formation, but also protects it 
from nucleolytic cleavage. RPA mediates the formation of Rad51 nucleoprotein filament, which forms the presynaptic complex with the aid 
of additional factors such as the tumor suppressor BRCA2, the recombination mediator Rad52 and the Rad51 paralogs (Rad51-B, Rad51-C, 
Rad51-D, XRCC2 and XRCC3) (18). Rad51 catalyzes homology-search, strand-pairing and strand–exchange, supported by Rad54, which has 
branch-migration activity. In this later step of HRR DNA synthesis begins, with the donor sequence serving as a template and Rad51 being 
removed from the DNA. Two models of DSB repair by HRR are shown: Synthesis-Dependent Strand Annealing (SDSA) and Double-Strand 
Break Repair (DSBR). During SDSA, one 3'-ssDNA participates in the formation of a single Holliday junction. In contrast, DSBR engages both 
3'-overhangs resulting in a double Holliday junction. Finally, enzymes termed resolvases, such as GEN1, MUS81/EME1, SLX1-SLX4, complete 
the process by resolving the Holliday junctions (19-21) and the DNA sequence around the DSB is restored with or without cross-over (22)
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DSB processing utilizing microhomologies is frequently 
termed microhomology-mediated end-joining (MMEJ). 
The occasional use of microhomologies in this repair 
pathway makes A-EJ a term semantically preferable to 
A-NHEJ. In the following discussion we consider MMEJ as 
a subset of A-EJ and refer explicitly to it only if it is relevant 
to the discussed context [reviewed in (7,29-32)].

A-EJ, as C-NHEJ, is error prone on two counts: it has 
no build-in mechanisms for restoring the DNA sequence 
in the vicinity of the DSB, and can catalyze the joining of 
unrelated DNA molecules, leading thus to the formation of 
translocations (7,16,32-34). On both counts, A-EJ is more 
error prone than C-NHEJ, i.e., sequence alterations at the 
junctions are more frequent and more extensive and the 
probability of translocation formation is much higher. As 
a result, and in contrast to C-NHEJ that is considered as a 
guardian of genomic stability, A-EJ is considered a major 
source of genomic instability (17,35-37).

The above outlined basic features of C-NHEJ, A-EJ and 
HRR indicate distinct functional characteristics, distinct 
possible outcomes during normal operation, and widely 
different risks for errors. These large and fundamental 
differences make the question of repair pathway choice 
for the processing of each individual DSB difficult to 

answer. Correct repair is only afforded by HRR, but is only 
available in a fraction of the cell cycle. C-NHEJ functions 
throughout the cell cycle and removes DSBs with high 
efficiency at the cost of small sequence alterations and a 
low probability for translocations. Finally, A-EJ functions 
throughout the cell cycle but is clearly functionally 
enhanced in S and G2 (38-42); it has the highest probability 
for generating translocations, as well as large deletions and 
other sequence alterations at the junction. Such dramatic 
differences in features, outcomes and risks make simple 
competition an “unwise” mechanism for pathway selection 
and suggest that undefined parameters underpin repair 
pathway choice. Such candidate parameters are presently 
hotly debated, but the issue remains for the most part 
unresolved.

In the following sections, we review the known enzymatic 
requirements of A-EJ and discuss emerging evidence for the 
involvement of this pathway in the generation of genomic 
instability and the development of cancer.

Core components of A-EJ

Several factors have been implicated in A-EJ (Figure 3) 
and their functional diversity has led to the postulate that 
there are several sub-pathways in operation, engaging 
prospectively at each DSB on the basis of as of yet undefined 
parameters in competition with other repair pathways 
(Figure 4A). A different model emerges by regarding all 
functions of A-EJ as backup operations that are initiated at 
DSBs only after C-NHEJ or HRR have engaged but failed 
to successfully complete processing (Figure 4B). According 
to the former model, the recruitment at the ends of factors 
of a given repair pathway will determine the processing of 
the DSB by this pathway. However, according to the second 
model, A-EJ will engage at DSBs where either C-NHEJ 
or HRR have attempted processing but somehow failed. 
Thus, at each DSB where A-EJ engages, factors of either 
C-NHEJ or HRR, particularly those involved at early steps, 
will be present when A-EJ takes DSB processing over. Also, 
it is possible, and even likely, that these factors have already 
operated at DNA ends and have carried out one or more of 
the initial steps of C-NHEJ or HRR, which of course alters 
the state of the substrate presented to A-EJ. Furthermore, 
the presence of C-NHEJ and HRR factors at the DNA ends 
may either facilitate or compromise A-EJ. In the following 
paragraphs, we review the function of A-EJ and the factors 
implicated from this mechanistic/operational perspective.

When the engagement of A-EJ follows failure of 
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Figure 3 Proteins participating in A-EJ pathway. Proteins 
implicated in A-EJ are PARP1, the MRN complex and its partner 
CtIP. After end processing, which also could be as part of failed 
HRR or C-NHEJ, the ends are rejoined either by LIG3 or LIG1 
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C-NHEJ, several of the early C-NHEJ factors may be 
present at the junction, but the process must be abrogated 
prior to ligation by LIG4. Available evidence suggests that 
under these conditions, end ligation is possible with one 
of the remaining ligases, LIG3 and LIG1 (43-48). While 
LIG3 is likely to be more effective, LIG1 is also remarkably 
fit for this function (48). Since LIG3 operates in other 
repair pathways together with XRCC1 and PARP1, its 
involvement in A-EJ implicates these factors in A-EJ as 
well. PARP1 is a sensor for DNA discontinuities, originally 
shown to operate in base excision and single-strand break 
repair (49). Previous work implicated PARP1 also in repair 
by A-EJ (46,50-53). There is even evidence for competition 
between Ku and PARP1 for DSBs (50,54,55) raising the 
possibility that pre-existing C-NHEJ factors at the DSB 
compromise A-EJ.

DNA end stabilization provided in C-NHEJ by Ku 
may be provided in A-EJ by histone H1 (56). However, it 
should be emphasized that to date the evidence for a role of 
histone H1 in A-EJ is of purely biochemical nature. Backup 
of C-NHEJ by A-EJ is likely to be associated with increased 
processing at the ends, and to result in the more frequent 
use of microhomologies. This form of backup function can 
occur in all phases of the cell cycle, because C-NHEJ is 
active throughout the cell cycle.

However, it is also possible that A-EJ backs up failures 
of HRR. Such events are possible only when HRR is active, 
i.e., in the S- and G2-phase of the cell cycle. It will also 
pertain only for the subset of DSBs that are processed 
by this repair pathway, and which according to current 
estimates lies between 10-20% of radiation induced DSBs 
(57,58). Under these conditions A-EJ may operate on 
resected ends that must be generated in order to inactivate 
C-NHEJ and allow end resection to prepare for HRR. 
This may explain the observed dependence of A-EJ on the 

MRN complex as well as CtIP, BRCA1 etc (45,59-65). Also, 
as a result of the processed ends likely to be present, it is 
possible that microhomologies fortuitously present are used 
as means of intermolecular stabilization of the two DNA 
ends to efficiently complete rejoining (29). However, end 
joining using microhomologies was also reported in vitro 
in reactions setup with cell-free extracts (66), and has also 
been described between repetitive elements in the human 
genome through single-strand annealing leading to genome 
rearrangements (67).

A-EJ is considered to be a mechanistically distinct repair 
pathway, and has been shown to be active throughout the 
cell cycle (7,16,31,33,68). Notably though, it is markedly 
enhanced in the G2 as compared to G1 phase, and is 
compromised in stationary-phase cells tested either in the 
G1 or G2 phase of the cell cycle (31,41,42,69). There are 
speculations that the latter response may be regulated by 
phosphorylation of BRCA1 at S988 through Chk2, where in 
its phosphorylated form BRCA1 promotes error-free NHEJ 
and suppresses mutagenic A-EJ. Therewith, it reduces the 
size of deletions at the breakpoint junction (65,70-72). 
However, this dependency is more likely in G2 than in G1 
cells as BRCA1/CtIP/MRN initiates DSB resection during 
S/G2 phases (73), and therefore alternative mechanisms 
should be explored.

A-EJ and the development of leukemias

Chromosomal translocations are a type of rearrangements, 
where parts of two different non-homologous chromosomes 
fuse together. Such types of chromosomal abnormalities 
have been described in cancer, mainly in leukemia and many 
types of lymphoma (34,74-77). Several lines of evidence 
implicate A-EJ to chromosome translocation formation 
that underlie leukemia and lymphoma (36,37,78,79). Since 

Figure 4 Schematic representation of the two models of DSB repair-pathway-choice: A. In this model all pathways are active and engage 
on a DSB as equals if they only manage to get access; B. In this model the choice is initially only between C-NHEJ and HRR, with A-EJ 
becoming involved as a backup only when one of them somehow fails
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these cancers frequently originate from erroneous repair 
of programmed DSBs generated during V(D)J and CSR 
recombination, we briefly review these processes before 
summarizing the available evidence for role of A-EJ in their 
formation.

V(D)J  recombinat ion ,  a l so  known as  somat ic 
recombination, and class switch recombination (CSR) 
are fundamental physiological mechanisms for the 
generation of the immune repertoire in mammals and for 
the development and survival of B and T cells. In both 
processes DNA DSBs occur as programmed events and are 
necessary for triggering recombination.

V(D)J recombination aims the generation of different 
combinations of pre-existing gene segments: variable (V), 
diversity (D) and joining (J). The first step is cleavage 
within specific recombination signal sequences (RSSs) by 
the lymphocyte-specific endonucleases RAG1 and RAG2, 
operating as a complex called RAG. These segments are 
rearranged next to each other during the resolution of these 
DSBs that are rejoined almost exclusively by C-NHEJ 
resulting in a V(D)J segment [for a review see (80-85)].

CSR is a process occurring in antigen-stimulated mature 
B cells, which changes the antibody production from one 
immunoglobulin (Ig) class or subclass (isotype) to another—
from IgM to IgG, IgE or IgA. The constant regions of 
different Ig isotypes are encoded by distinct CH exon 
clusters in the immunoglobulin heavy chain locus. CSR is 
initiated by activation-induced cytidine deaminase (AID), 
which deaminates cytidines to uridines within switch (S) 
regions. The ensuing cascade of repair reactions leads to 
the generation of DSBs. Deleting sequences between the 
S regions leads to expression of a new constant region, and 
thus to the production of an antibody of different class. 
Hence, during CSR the heavy chains are altered but the 
variable regions remain unchanged and the antibody retains 
its antigen specificity [for a detailed review see (86,87)].

Several NHEJ factors have already been implicated in 
V(D)J recombination (88-92). However, evidence exists that 
the essential component of C-NHEJ, Ku70, is dispensable 
for T cell antigen receptor (TCR) V(D)J recombination, 
suggesting the involvement of other repair pathways (93).

Deficiencies in the immune system development, 
particularly lymphocytes, lead to severe combined 
immunodeficiency syndrome (SCID), which is often 
associated with mutations in DNA repair proteins (94-99). 
Notably, the SCID phenotype is observed in mice deficient 
in any of C-NHEJ proteins (100,101), as well as in mice 
lacking one of the RAG proteins (81,102,103). These mice 

also frequently develop tumors with translocations involving 
the Ig locus that are now known to be generated by A-EJ (see 
below). A model was proposed, where RAG1/2 proteins 
together with C-NHEJ factors suppress A-EJ mediated 
genomic instability during V(D)J recombination (104,105). 
This result could also be reproduced in a plasmid model 
system (106).

It is relevant to point out here that RAG post-cleavage 
complex shunts the broken DNA ends to C-NHEJ, thus 
suppressing aberrant recombination events. In compromised 
V(D)J recombination, through mutations destabilizing the 
post-cleavage complex, the ends are free to participate in 
HRR or A-EJ repair leading to CSR but also to genomic 
instability (104,105,107-109).

A l though RAG-media ted  DSBs  dur ing  V(D)J 
recombination are predominantly rejoined by the C-NHEJ 
pathway, repair of DSBs in the switch (S) regions during 
CSR is not largely compromised in C-NHEJ deficient cells 
and a direct shift of processing to A-EJ is observed (110-112). 
CSR is not affected by the absence of DNA-PKcs (113,114), 
and is likely to use Lig1 or Lig3 (44). Taking into account 
the requirement of Ku for CSR (115,116), these findings 
strongly suggest the use of A-EJ during CSR.

As mentioned above, A-EJ frequently joins IgH locus 
breaks to breaks in genes such as c-myc in other chromosomes 
generating translocations and causing leukemias. This has 
been observed in the combined absence of Ku70 and Lig4, 
as well as in the absence of XRCC4 (36,110). Besides normal 
CSR frequency, B cells heterozygous for XRCC1 also show 
reduced IgH/c-myc translocations during CSR implicating 
XRCC1 in A-EJ (117). An interesting observation is that 
this proposed factor for A-EJ, XRCC1, which acts in a 
complex with Lig3, is not required for A-EJ during CSR 
and its absence even slightly increases CSR efficiency 
(118,119). Similar results were also obtained with mouse 
cells deleted of different forms of LIG3 (120). Also PARP1 
and PARP2 do not seem to be required for CSR. However, 
PARP1 was shown to favor A-EJ and PARP2 to suppress 
translocations during CSR (121). Interestingly, in I.29µ B 
cell lymphoma and splenic B cells, PARP inhibitors lead to 
increased antibody class switching (122). It appears therefore 
that the context of the DSB determine the requirements for 
components such as PARP1 and XRCC1. In this regard, 
DSB repair by PARP1-dependent/Ku-independent EJ is 
more efficient in the presence of microhomology termini 
containing G:C base pairs (123,124).

An A-EJ pathway using microhomologies has been 
invoked in a general model of formation of oncogenic 
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complex translocations (complicons). Pro-B lymphomas 
in mice lacking both p53 and classical NHEJ contain 
complicons that co-amplify c-myc sequence in chromosome 15 
and IgH in chromosome 12 associated with microhomology 
at the translocation junctions (125). Furthermore, deficiency 
of C-NHEJ component XLF/Cernunnos is also associated 
with human B cell malignancies, where CSR junctions are 
also characterized by long microhomologies (126).

The expression of oncogenic BCR-ABL gene fusion is a 
result of reciprocal translocation t[9;22] and is predominantly 
associated with chronic myelogenous leukemia (CML). 
BCR-ABL tyrosine kinase facilitates cell division and results 
in increased reactive oxygen species (ROS), which in turn 
lead to increased DNA damage including DSBs (127,128). 
Moreover, BCR-ABL-positive CML is associated with up-
regulated A-EJ (129).

The BCR-ABL translocation is often associated with 
microhomologies at the junctions and with interspersed 
repeats (130). Furthermore, in BCR-ABL-positive CML 
cells key proteins of C-NHEJ, Artemis and Lig4, are down-
regulated. In contrast, the levels of proteins involved in 
A-EJ, Lig3α and WRN, are elevated. Additionally, depletion 
of either Lig3α or WRN results in decreased end-joining 
efficiency. The authors suggest therefore that A-EJ enables 
CML cells to repair ROS-induced DSBs and survive. Since 
A-EJ is error-prone, the survival is associated with increased 
genomic instability and disease progression (131).

The most common mutations in acute myeloid leukemia 
(AML) are internal tandem duplications (ITD) of FMS––
like tyrosine kinase-3 (FLT3) receptor, known as FLT3-
ITD. Cells expressing FLT3-ITD and bone marrow 
mononuclear cells from FLT3-ITD knock-in mice utilize 
microhomology-mediated A-EJ to repair DSBs leading 
to increased number of deletions. Additionally, the level 
of Lig3α in FLT3-ITD-expressing cells is up-regulated 
and the protein level of the C-NHEJ component Ku is 
decreased, indicating that the FLT3 signaling pathway shifts 
DSB repair toward A-EJ (132). 

But  how is  C-NHEJ suppress ing chromosome 
translocations? In a model for DSB rejoining of correct 
ends, DNA-PKcs has a key role: together with Ku, DNA-
PKcs improves the interactions between the participating 
proteins generating thus some form of molecular rejoining 
machine (16,133,134). Additionally, the local chromatin 
structure is altered and the correct ends are rapidly captured 
within this machine. In contrast, the evolutionarily older 
and slower A-EJ is using proteins that fail to undergo 
efficient intermolecular interactions, reducing thus 

efficiency and speed of repair and increasing the probability 
of end resection and exchange formation (16).

This model is supported by the observation that the 
C-NHEJ protein Ku80 ensures positional stability of broken 
DNA ends (135) and suppresses chromosomal aberrations 
in mouse cells (136). Along this line, cells deficient in Ku70 
display increase in reciprocal translocations (137). 

Moreover, a detailed work by Jasin et al. implicates 
A-EJ as a main pathway for chromosomal translocations 
in mammalian cells. The C-NHEJ component XRCC4-
Lig4 suppresses A-EJ-mediated translocation formation in 
wild-type cells. The authors found longer microhomologies 
at the junctions in XRCC4-/- cells, and that DSB repair 
causing translocations does not rely on XRCC4 (37). These 
observations are further supported by the requirement of 
Lig3 for microhomology-mediated EJ during translocation 
formation (44). Finally, there are speculations about a 
second alternative of EJ, which acts independently of 
microhomologies and utilizes Lig1 (44). An interesting 
observation is that the high level of genomic instability 
of bladder cancer is a consequence of microhomology-
mediated end-joining of DSBs, which is likely a main repair 
pathway in bladder cancer cells (138).

Thus, A-EJ is more translocation prone, probably due to 
its mechanistic basis and its slower kinetics, and therewith 
responsible for genomic instability and cancer development.

The function of A-EJ in telomere maintenance

If not protected, chromosome ends (telomeres) are likely 
to be recognized as broken DNA ends and to elicit DNA 
damage response (DDR) (139,140). As a direct consequence 
of the initiated DDR, different chromosomes can fuse 
end-to-end by NHEJ and less frequently by homology-
mediated repair, resulting in dicentric chromosomes, which 
are unstable during mitosis. Similar unfavorable effects are 
initiated when the chromatids of one chromosome join to 
form a sister union that can cause anaphase bridges leading 
to genomic instabilities or cell death.

To escape this problem, the ends of eukaryotic chromosomes 
are protected by telomeres, which also circumvent the 
sequence loss problem associated with semi-conservative DNA 
replication. Telomeres are nucleoprotein structures, consisting 
of long stretches of TTAGGG repeats in humans and the 
telomere-specific protein complex, shelterin. The key enzyme 
in telomere maintenance, which adds telomeric repeats to 
the 3' end of DNA strands, is the telomerase. Moreover, end 
protection benefits from the unique structure of the telomere,  
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t-loop [for a detailed review, see (141)].
Previous work suggested that NHEJ is the major DNA 

repair pathway responsible for the fusion of dysfunctional 
telomeres (142). But which pathway is primarily responsible 
for this function? A plenty of data shows that C-NHEJ 
proteins like DNA-PKcs and Ku are present at the 
telomeric regions and are actually required for telomere 
capping/maintenance (143-148). The presence of these 
proteins in the telomeric regions suggests that in case of 
telomere erosion, end-joining by C-NHEJ may ensue. 
However, using a telomerase-deficient mouse model, Maser 
and colleges reported that fusion of critically shortened 
telomeres does not depend on the C-NHEJ components 
DNA-PKcs and Lig4, and suggested that A-EJ has a 
major role (149). Other reports suggest that dysfunctional 
telomeres may be processed for joining by both NHEJ 
pathways, although A-EJ may be preferentially functional 
on naturally shortened telomeres (150).

A recent study from Oh and colleges reports the synthetic 
lethality between Lig4 and Rad54B in human epithelial 
cells, suggesting that A-EJ is not sufficient for repair of 
DSBs. In addition, they postulate that C-NHEJ often leads 
to chromosome: chromosome fusions, while A-EJ favors 
sister chromatid fusions (151). A proposed model is that in 
wild type cells, Ku and the shelterin subunit TRF2 suppress 
both C-NHEJ and A-EJ. However, overexpression of the 
dominant-negative TRF2ΔBΔM to suppress TRF2 function 
leads to increased number of chromosome: chromosome 
fusions supported by C-NHEJ. On the other hand, A-EJ 
dominates in Ku86 deficient cells resulting in large numbers 
of sister: sister chromatid fusions (151). These data are 
reminiscent of the PARP1-Ku competition and suggest that 
telomere erosion follows similar rules. 

A-EJ factors as targets for cancer therapy

A novel and promising therapeutic strategy is the use of 

PARP1 inhibitors to improve the therapy of cancers with 
BRCAness (152). Similarly, PARP1 inhibitors could be 
implicated in the therapy of cancers associated with increase 
in the use of A-EJ pathway for DSB repair.

Attractive therapeutic targets are also the DNA ligases, which 
complete the process by rejoining the DNA ends (153). As 
already described above, the levels of two proteins involved 
in A-EJ, Lig3α and Werner syndrome helicase (WRN), are 
up-regulated in BCR-ABL-positive CML cells (131). Since 
BCR-ABL-positive CML is treated by the tyrosine-kinase 
inhibitor Imatinib (Gleevec), the inhibition of A-EJ factors 
reveals a novel and more effective therapeutic approach. 
A recent study from Tobin and colleagues reported that 
BCR-ABL-positive CML cells resistant to Imatinib were 
hypersensitive to the combined treatment of Ligase and 
PARP inhibitors, correlating with hyperactive A-EJ. 
Furthermore, elevated levels of Lig3α and PARP1 in CML 
patients were proposed to be biomarkers for therapies 
targeting A-EJ components when treatment with tyrosine 
kinase inhibitors is ineffective (154). This novel therapeutic 
approach could also be applied to therapy-resistant breast 
cancer cell lines, which were shown to be sensitive to DNA 
ligase and PARP inhibitors (155). Similarly, new therapeutic 
strategies for AML associated with FLT3 mutations may 
also include Lig3α or PARP1 inhibitors (132).

Concluding remarks

The involvement of A-EJ in genome instability and cancer 
development is indisputable. However, the mechanisms 
balancing C-NHEJ and A-EJ in healthy cells remain 
unknown and require in-depth study. 

Parameters and proteins having positive and negative effects 
on A-EJ are depicted in Figure 5. As already outlined above, 
Ku ensures positional stability of broken DNA ends (135) 
and competes with PARP1 for DSB repair (50,54,55). In 
addition, Ku is considered the main determinant of the 
choice between C-NHEJ and A-EJ in human somatic cells, 
preferring to assist C-NHEJ (156). Another DNA damage 
response factor, 53BP1, also favors CSR through C-NHEJ 
by preventing DNA end resection and A-EJ (157,158). 
In addition, histone variant H2AX suppresses DNA end 
resection in G1-phase lymphocytes ensuring efficient 
repair by C-NHEJ (159). Finally, Fanconi anemia (FA) genes 
contribute to the regulation of NHEJ pathways (160), and there 
is evidence that DNA-PKcs negatively regulates A-EJ (161). 
While this information generates solid foundations to build 
upon, important details are still missing and require further 

Figure 5 Parameters assisting and restraining A-EJ (see text for details) 
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exploration.
Besides proper DNA repair, the maintenance of genome 

integrity requires checkpoint activation. In this regard, 
ATM was shown to prevent prolonged presence of DSBs 
and chromosomal translocations in lymphocytes (162). 
ATM is also directly involved in RAG-induced DSB repair 
ensuring stable DSB complexes and preventing aberrant 
rearrangements (163). Possible connections between 
checkpoint proteins and A-EJ regulation remain to be 
established. 

In the front of cancer treatment, the possibility of 
combining inhibitors of A-EJ with other treatment 
modalities to improve the outcome, at least in tumors with 
enhanced A-EJ, has strong rationale and is likely to see 
application in the future. Finally, the intriguing possibility 
of protecting organisms from carcinogenesis by limiting the 
function of A-EJ should be considered and tested.
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