Outcomes of patients with large cell neuroendocrine carcinoma of the lung after complete resection

Ke Han1*, Haitang Yang2,3,4*, Liwen Fan1, Heng Zhao1

1Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China; 2Division of General Thoracic Surgery, Inselspital Bern University Hospital, Bern, Switzerland; 3Department of Clinical Research, University of Bern, Bern, Switzerland; 4Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland

Contributions: (I) Conception and design: K Han; (II) Administrative support: H Zhao; (III) Provision of study materials or patients: H Yang; (IV) Collection and assembly of data: L Fan; (V) Data analysis and interpretation: K Han; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

*These authors contributed equally to this work.

Background: Large cell neuroendocrine carcinoma (LCNEC) of the lung is a relatively uncommon, aggressive, and preoperatively difficult-to-diagnosis malignancy. Treatment outcomes have not been extensively investigated.

Methods: A cohort of 90 patients who underwent surgical resection and systematic nodal dissection for LCNEC between 2008 and 2014 at a single institution was retrospectively reviewed.

Results: The 90 patients included 80 males and 10 females, with an average age of 62 years. The median survival was 34 months. The 3-year overall survival (OS) and disease-free survival (DFS) were 36.3% and 32.2%, respectively. Multivariate analyses using Cox’s proportional hazards models showed that smoking history [no vs. yes, hazards ratio (HR) =0.390; 95% confidence interval (CI): 0.182–0.835; P=0.015], pathological stage (stage I vs. stage III, HR =0.098, 95% CI: 0.043–0.221; P=0.001; stage II vs. III, HR =0.119, 95% CI: 0.044–0.324, P=0.001), and postoperative chemotherapy (Yes vs. No, HR =0.223; 95% CI: 0.112–0.443; P=0.001) were significant prognostic factors for OS. Further analysis showed that after adjustment patients treated with a small cell lung cancer (SCLC) regimen had better survival than those treated with a non-small cell lung cancer (NSCLC) regimen (HR =0.420, 95% CI: 0.189–0.936, P=0.034).

Conclusions: Post-operative chemotherapy is beneficial for patients with completely resected and systematic nodal dissection. An SCLC-based chemotherapy regimen leads to better survival than a NSCLC-based regimen in patients with completely resected LCNEC.

Keywords: Large cell neuroendocrine carcinoma (LCNEC); surgery; chemotherapy

Submitted Feb 11, 2017. Accepted for publication May 12, 2017.

doi: 10.21037/tcr.2017.06.14

View this article at: http://dx.doi.org/10.21037/tcr.2017.06.14

Introduction

Tumors of the lung with neuroendocrine morphology comprise a spectrum of tumor types with distinct biology and clinical features; they include low-grade typical carcinoid, intermediate-grade atypical carcinoid, high-grade large cell neuroendocrine carcinoma (LCNEC), and small cell lung cancer (SCLC) according to the recent revision of the World Health Organization (WHO) classification of lung and pleural tumors (1). LCNEC fulfilled the following criteria: neuroendocrine morphology, mitotic rate greater than 10 per 10 high-power field, necrosis (often large zones), cytologic features of non-small cell lung cancer (NSCLC), and positive immunohistochemical staining for one or more neuroendocrine markers (2). Among high-
grade neuroendocrine carcinomas, LCNEC is rarer than SCLC (1,3). Most data related to the treatment of LCNEC is based on retrospective analyses of small case series (4,5). Thus, the surgical outcomes of LCNEC patients and optimal treatment approaches are not well known. For instance, it is unclear whether LCNEC should be treated chemotherapeutically as a SCLC or as a NSCLC. To address this issue, the present study evaluated the prognosis of patients with surgically-treated LCNEC.

Methods

Patients demographics

Between January 2008 and December 2014, a total of 17,184 patients underwent surgical resection of primary lung cancer (NSCLC) at the Department of Thoracic Surgery of Shanghai Chest Hospital (Shanghai 200030, China). Of these patients, we reviewed the surgical records of 104 (0.6%) consecutive cases treated by tumor resection for primary LCNEC, which was determined based on the diagnostic criteria proposed by the 2015 edition of the WHO classification system (1). All patients underwent a complete preoperative examination and were considered as having tumors that were potentially curable by surgical resection. Regarding combined LCNEC, immunohistochemistry staining was evaluated for each C-LCNEC and non-LCNEC component and was regarded as positive if at least 10% of the tumor cells were stained. Patients with combined LCNEC, local macroscopic/microscopic neoplastic residue, sublobar resections or lymph node sampling were excluded. There was no perioperative death. Data for the remaining 90 patients who underwent complete tumor resection and lymphadenectomy were analyzed. The study protocol was approved by the institutional review board.

Preoperative work-up

All patients underwent a preoperative examination to exclude distant metastasis which include computed tomography scan of the chest; adrenal gland, liver, and brain (subsequent magnetic resonance imaging was performed while brain metastases were suspected); bone scanning; ultrasonography examination; fibro bronchoscopy; and biopsy (endo/transbronchial, transthoracic) when possible. At our institution, only patients with mediastinal lymph node enlargement (>1 cm) routinely underwent cervical mediastinoscopy or endobronchial ultrasound-guided transbronchial needle aspiration or were examined by positron emission tomography to exclude mediastinal lymphatic metastasis. Disease stage was determined based on the tumor-node-metastasis (TNM) classification using the International Union against cancer staging system (6). Clinical data including sex, age, smoking history, performance status, location (central/peripheral), type of resection, pathological stage, and post-operative adjuvant regimens were collected.

Follow-up

All patients with tolerable status were suggested to receive adjuvant chemotherapy at the first month after surgery. Patients were followed-up every 3 months for the first year and then every 3 to 6 months thereafter. Disease-free survival (DFS) was calculated from the day of operation to the time of first relapse (recurrence or metastasis). Overall survival (OS) was calculated from the day of operation to the date of death from any cause or of the last follow-up.

Statistical methods

Normally distributed continuous variables are presented as the mean ± standard deviation (SD), otherwise as the median and range, while categorical variables are presented as numbers and percentages. Survival rates were calculated with the Kaplan-Meier method. All patients who were alive at the last follow-up were censored. The log-rank test was used to compare survival between different groups. The Cox proportional hazard model was used to evaluate the effects of variables that could affect prognosis. All tests were two-sided and a P value <0.05 was considered to indicate statistical significance. Statistical analyses were performed using SPSS v.19.0 software (SPSS Inc., Chicago, IL, USA).

Results

Patient characteristics and treatment

The demographic characteristics of the all patients are shown in Table 1. Of the 90 cases of LCNEC, 21 (23.3%) were central and 69 (76.7%) were peripheral tumors. A preoperative tissue diagnosis was made in 62 patients (68.9%); only a small fraction of these patients were diagnosed with LCNEC (n=9, 10%), but most were diagnosed with nonspecific cell types, including NSCLC...
Table 1 Patients characteristics and univariate analysis of all patients

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>N [%]</th>
<th>Disease-free survival</th>
<th>Overall survival</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean (months)</td>
<td>P value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of patients</td>
<td>90 [100]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>80 [88.9]</td>
<td>45.0±4.6</td>
<td>0.650</td>
</tr>
<tr>
<td>Female</td>
<td>10 [11.1]</td>
<td>38.6±11.8</td>
<td></td>
</tr>
<tr>
<td>Age, y, mean [range]</td>
<td>61.88 [36–79]</td>
<td>0.697</td>
<td></td>
</tr>
<tr>
<td><62</td>
<td>45 [50]</td>
<td>45.8±6.3</td>
<td>0.697</td>
</tr>
<tr>
<td>>62</td>
<td>45 [50]</td>
<td>43.2±6.2</td>
<td></td>
</tr>
<tr>
<td>Smoking history</td>
<td></td>
<td></td>
<td>0.003*</td>
</tr>
<tr>
<td>Smoker</td>
<td>64 [71.1]</td>
<td>27.4±3.0</td>
<td></td>
</tr>
<tr>
<td>Nonsmoker</td>
<td>26 [28.9]</td>
<td>64.6±7.1</td>
<td></td>
</tr>
<tr>
<td>Performance status</td>
<td></td>
<td></td>
<td><0.001*</td>
</tr>
<tr>
<td>0–1</td>
<td>82 [91.1]</td>
<td>50.0±4.9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8 [8.9]</td>
<td>13.1±4.1</td>
<td></td>
</tr>
<tr>
<td>Surgical approach</td>
<td></td>
<td></td>
<td>0.174</td>
</tr>
<tr>
<td>Thoracotomy</td>
<td>44 [48.9]</td>
<td>35.3±5.2</td>
<td></td>
</tr>
<tr>
<td>VATS</td>
<td>46 [51.1]</td>
<td>50.3±6.2</td>
<td></td>
</tr>
<tr>
<td>Type of resection</td>
<td></td>
<td></td>
<td>0.039*</td>
</tr>
<tr>
<td>Lobectomy/sleeve resection</td>
<td>71 [78.9]</td>
<td>48.7±5.0</td>
<td></td>
</tr>
<tr>
<td>Bilobectomy/pneumonectomy</td>
<td>19 [21.1]</td>
<td>23.2±5.2</td>
<td></td>
</tr>
<tr>
<td>Stage of disease</td>
<td></td>
<td></td>
<td><0.001*</td>
</tr>
<tr>
<td>IA/IB</td>
<td>9/27 [10.0/30.0]</td>
<td>63.8±6.6</td>
<td></td>
</tr>
<tr>
<td>IIA/IIB</td>
<td>2/12 [2.2/13.3]</td>
<td>67.6±7.4</td>
<td></td>
</tr>
<tr>
<td>IIIA/IIIB</td>
<td>36/4 [40.0/4.4]</td>
<td>15.5±2.3</td>
<td></td>
</tr>
<tr>
<td>Tumor size [1.4–8 cm]</td>
<td></td>
<td></td>
<td>0.065</td>
</tr>
<tr>
<td>>3 cm</td>
<td>53 [58.9]</td>
<td>39.1±5.8</td>
<td></td>
</tr>
<tr>
<td><3 cm</td>
<td>37 [41.1]</td>
<td>52.8±6.6</td>
<td></td>
</tr>
<tr>
<td>Location of tumor</td>
<td></td>
<td></td>
<td>0.080</td>
</tr>
<tr>
<td>Central</td>
<td>21 [23.3]</td>
<td>28.8±6.8</td>
<td></td>
</tr>
<tr>
<td>Peripheral</td>
<td>69 [76.7]</td>
<td>48.3±5.1</td>
<td></td>
</tr>
<tr>
<td>Ki 67%</td>
<td></td>
<td></td>
<td>0.217</td>
</tr>
<tr>
<td><52%</td>
<td>28 [31.1]</td>
<td>44.0±5.9</td>
<td></td>
</tr>
<tr>
<td>>62%</td>
<td>62 [68.9]</td>
<td>42.2±5.4</td>
<td></td>
</tr>
<tr>
<td>Mitotic index [1/2 mm²]</td>
<td></td>
<td></td>
<td>0.148</td>
</tr>
<tr>
<td><58</td>
<td>34 [37.8]</td>
<td>43.9±5.4</td>
<td></td>
</tr>
<tr>
<td>>58</td>
<td>56 [62.2]</td>
<td>41.2±5.6</td>
<td></td>
</tr>
</tbody>
</table>
(n=7, 7.8%), atypical carcinoid (n=6, 6.7%), and poorly differentiated carcinoma (n=8, 8.9%). Other biopsy specimens were manifested as necrotic lesions (punctate foci or large infarctlike zones).

The distribution of pathologic stage was stage IA in 9 patients (10%), stage IB in 27 (30%), stage IIA in 2 (2.2%), stage IIB in 12 (13.3%), and stage IIIA in 36 (40%), and stage IIIB in 4 patients (4.4%). The mean Ki-67 labeling index for all patients was 52.4% (range, 6.5–88.2%), and the mean mitotic index was 58/2 mm² (range, 38–98/2 mm²). All 90 patients had tumor necrosis (median, 50%; range, 10–80%).

Adjuvant treatment

Sixty-four of 90 patients (71.1%) received post-operative chemotherapy (platinum-based regimen), including 32.8% (21/64) stage I diseases, 17.2% (11/64) stage II diseases, 50% (32/64) stage III diseases, respectively. The types of chemotherapeutic regimens were at the discretion of the treating physicians. Four cycles of chemotherapy were recommended as postoperative adjuvant therapy. All chemotherapy regimens were repeated every 3 weeks, up to 4 cycles or until the occurrence of patients’ intolerance. And these patients were treated with an SCLC-based regimen (etoposide/cisplatin; n=35) or an NSCLC-based regimen (gemcitabine, n=9; vinorelbine, n=8; pemetrexed, n=7; taxol, n=5). There was no significant difference in baseline characteristics between the SCLC-based and NSCLC-based regimen groups (Table 2). Besides, among the 64 patients, 5 patients with preoperatively diagnosed as N2 disease received induction chemotherapy, 4 with stage IIIb disease received prophylactic cranial irradiation, 9 with stage IIIa disease received adjuvant thoracic irradiation, respectively.

Of the 26 patients who did not receive adjuvant therapy, eight patients are due to relatively poor performance status. Six discontinued the treatment because of the intolerable side effects. Nine had poor treatment compliance due to fear of the potential side effects caused by chemotherapy. Three patients did not to receive

Table 1 (continued)

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>N [%]</th>
<th>Disease-free survival</th>
<th>Overall survival</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean (months)</td>
<td>P value</td>
</tr>
<tr>
<td>Pathologic nodal stage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>42 [46.7]</td>
<td>60.4±5.1</td>
<td><0.001*</td>
</tr>
<tr>
<td>N1</td>
<td>15 [16.7]</td>
<td>52.3±9.9</td>
<td></td>
</tr>
<tr>
<td>N2</td>
<td>33 [36.7]</td>
<td>45.1±2.6</td>
<td></td>
</tr>
<tr>
<td>Adjuvant therapy</td>
<td></td>
<td></td>
<td>0.038*</td>
</tr>
<tr>
<td>No</td>
<td>26 [28.9]</td>
<td>29.4±6.4</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>64 [71.1]</td>
<td>50.1±5.4</td>
<td></td>
</tr>
<tr>
<td>CTx alone</td>
<td>51</td>
<td>49.1±6.0</td>
<td>0.580</td>
</tr>
<tr>
<td>CTx + irradiation</td>
<td>13</td>
<td>38.6±5.7</td>
<td></td>
</tr>
<tr>
<td>Recurrence [first manifestation]</td>
<td>55 [61.1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local</td>
<td>18 [20]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distant metastases</td>
<td>32 [35.6]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abdomen</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brain</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Both sites simultaneously</td>
<td>5 [5.6]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*, statistically significant at P<0.05. VATS, video-assisted thoracoscopic surgery; CTx, chemotherapy.
Table 2 Baseline characteristics of patients treated with post-operative chemotherapy

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>SCLC based regimen, n [%]</th>
<th>NSCLC based regimen, n [%]</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients</td>
<td>35 [100]</td>
<td>29 [100]</td>
<td>0.812</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>32 [91.4]</td>
<td>26 [89.7]</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>3 [8.6]</td>
<td>3 [10.3]</td>
<td></td>
</tr>
<tr>
<td>Age, year</td>
<td></td>
<td></td>
<td>0.096</td>
</tr>
<tr>
<td>>62</td>
<td>12 [34.3]</td>
<td>16 [55.2]</td>
<td></td>
</tr>
<tr>
<td><62</td>
<td>23 [65.7]</td>
<td>13 [44.8]</td>
<td></td>
</tr>
<tr>
<td>Smoking history</td>
<td></td>
<td></td>
<td>0.150</td>
</tr>
<tr>
<td>Smoker</td>
<td>22 [37.1]</td>
<td>23 [79.3]</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>13 [62.9]</td>
<td>6 [20.7]</td>
<td></td>
</tr>
<tr>
<td>Performance status</td>
<td></td>
<td></td>
<td>0.818</td>
</tr>
<tr>
<td>0</td>
<td>33 [93.9]</td>
<td>27 [93.1]</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2 [6.1]</td>
<td>2 [6.9]</td>
<td></td>
</tr>
<tr>
<td>Location of tumor</td>
<td></td>
<td></td>
<td>0.869</td>
</tr>
<tr>
<td>Central</td>
<td>9 [25.7]</td>
<td>8 [27.6]</td>
<td></td>
</tr>
<tr>
<td>Peripheral</td>
<td>26 [74.3]</td>
<td>21 [72.4]</td>
<td></td>
</tr>
<tr>
<td>Surgical procedure</td>
<td></td>
<td></td>
<td>0.887</td>
</tr>
<tr>
<td>Lobectomy/sleeve resection</td>
<td>26 [74.3]</td>
<td>22 [75.9]</td>
<td></td>
</tr>
<tr>
<td>Bilobectomy/pneumonectomy</td>
<td>9 [25.7]</td>
<td>7 [24.1]</td>
<td></td>
</tr>
<tr>
<td>Tumor size</td>
<td></td>
<td></td>
<td>0.949</td>
</tr>
<tr>
<td>>3 cm</td>
<td>13 [37.1]</td>
<td>11 [37.9]</td>
<td></td>
</tr>
<tr>
<td><3 cm</td>
<td>22 [62.9]</td>
<td>18 [62.1]</td>
<td></td>
</tr>
<tr>
<td>Irradiation</td>
<td></td>
<td></td>
<td>0.773</td>
</tr>
<tr>
<td>PCI</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>TI</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TNM stage</td>
<td></td>
<td></td>
<td>0.094</td>
</tr>
<tr>
<td>IA/IB</td>
<td>3/11 [40]</td>
<td>2/5 [24.1]</td>
<td></td>
</tr>
<tr>
<td>IIA/IIB</td>
<td>1/6 [20]</td>
<td>2/3 [13.8]</td>
<td></td>
</tr>
<tr>
<td>IIIA/IIIB</td>
<td>13/1 [40]</td>
<td>16/2 [62.1]</td>
<td></td>
</tr>
</tbody>
</table>

Statistically difference at P<0.05. SCLC, small cell lung cancer; NSCLC, non-small cell lung cancer; PCI, prophylactic cranial irradiation; TI, thoracic irradiation.

chemotherapy because of poor economic status. Within the follow-up period, 55 (61.1%) patients relapsed (Table 1) and 52 (57.8%) died. The 5-year DFS was 32.2% (49.5% for stage I, 59.7% for stage II, and 5.9% for stage III), whereas the 5-year OS was 36.3% (58.8% for stage I, 62.5% for stage II, and non-evaluated

Survival analysis

The median follow-up was 35 months (range, 2.0–100 months).
for stage III).

Univariate analyses revealed that post-operative chemotherapy (P=0.038), types of resection (P=0.039), smoking history (P=0.003), performance status (P<0.001), and TNM stage (P<0.001) were significant prognostic factors for DFS whereas post-operative chemotherapy (P=0.019; Figure 1), types of resection (P=0.004), tumor location (P=0.037), smoking history (P<0.001), performance status (P<0.001), and TNM stage (P<0.001) were significant prognostic factors for OS (Table 1).

A multivariate analysis for DFS showed that smoking history (no vs. yes, HR =0.463; 95% CI: 0.237–0.903; P=0.024), postoperative chemotherapy (yes vs. no, HR =0.278; 95% CI: 0.146–0.528; P<0.001), and early pathological stage (stage I vs. stage III: HR =0.106, 95% CI: 0.049–0.229; P<0.001; stage II vs. III, HR =0.097, 95% CI: 0.035–0.268, P<0.001) were independent prognostic factors of good outcome (Table 3). On the other hand, the multivariate Cox model indicated that smoking history (no vs. yes, HR=0.390; 95% CI: 0.182–0.835; P=0.015), pathological stage (stage I vs. stage III; HR =0.098, 95% CI: 0.043–0.221; P<0.001; stage II vs. III, HR =0.119, 95% CI: 0.044–0.324, P<0.001), and postoperative chemotherapy (yes vs. no, HR =0.223; 95% CI: 0.112–0.443; P<0.001) were significant prognostic factors for OS (Table 3).

Both uni- and multivariate analyses showed that patients who received a SCLC-based chemotherapy regimen survived longer than those who received an NSCLC-based regimen (P=0.029; HR =0.420, 95% CI: 0.189–0.936, P=0.034 after adjustment; Figure 2, Table 4).

Discussion

We retrospectively reviewed data on 90 patients with pulmonary LCNEC who underwent surgical resection. Long-term survival and DFS were influenced by smoking history, pathological stage, and post-operative chemotherapy.

In accordance with previous studies (7,8), patients with LCNEC were predominantly males and smokers. In our study, smoking history was a significant negative prognostic factor for OS and DFS, which further confirmed the link between tobacco and LCNEC.

LCNEC is a relatively uncommon tumor; the overall incidence of resectable LCNEC is estimated to be <3% (9-11). In our study, the incidence was 0.6% of all patients who underwent thoracic surgery. However, another study carried out in Japan found an incidence of LCNEC of 3.1% (7); thus, disease incidence may differ according to region.

LCNEC is difficult to identify preoperatively and is likely under-diagnosed, since biopsies are usually insufficient for correct diagnosis. In our study, the preoperative diagnosis in most patients was poorly differentiated carcinoma or

![Figure 1](image.png)
NSCLC. There are several possible reasons for this finding. Firstly, LCNEC has the similar clinical and radiological features as other lung cancers, and is therefore difficult to distinguish solely on the basis of its presentation. Secondly, it is difficult to perform transbronchial biopsy on these largely peripheral tumors. Thirdly, a small biopsy or cytological specimen through percutaneous CT-guided biopsy may not be representative of the entire lesion (12). Fourthly, the morphology of LCNEC must be identified by light microscopy; other potential diagnoses includes SCLC, adenocarcinoma, and NSCLC, especially poorly differentiated adeno- or squamous cell carcinoma. Fifthly, the size difference between “small” and “large” cells is not absolute and can obscure diagnoses (13). Finally, since the material used for diagnosis (based on biopsy or cytology) is limited, and the typical morphology of neuroendocrine carcinoma cells is absent; it is therefore recommended to perform immunohistochemical staining for neuroendocrine markers (14).

The 5-year survival of LCNEC ranges from 13–57%; patients with LCNEC have worse survival than those with classic large-cell carcinoma or other NSCLCs (7). The 5-year OS of patients with LCNEC was 36.3% in our study, which is consistent with the rate of 35.5% reported by some investigators (7), but lower than the rate of 43% (8) and 40.3% (15) reported by others. This could be due to differences in the percentages of cases in each stage of the disease. In the present study, 36 patients (40%) were stage IIIA and four (4.4%) were stage IIIB. Among these patients, only five patients were preoperatively diagnosed with N2 disease and relieved after receiving induction chemotherapy. The other patients were unexpectedly detected after surgery.

LCNEC represents a subtype of high-grade neuroendocrine tumor and has poor prognosis similar to SCLC. Chemotherapy and radiotherapy are standard treatments for SCLC patients, even those with limited disease. However, whether LCNEC should be treated in a similar manner as SCLC was unknown. Because there was no significant difference between the chemotherapy alone group and chemoradiotherapy group for survival (P=0.845; Table 1). So we recognized them as the same group (post-operative chemotherapy group). In our study, 64 LCNEC patients received post-operative adjuvant treatment after complete resection and showed a significantly better prognosis than those not, which were similar to previous reports (16-18). However, Filosso et al. (19) analyzed 135 patients with LCNEC and found that postoperative adjuvant chemotherapy (platinum plus etoposide) was not effective.

![Figure 2](image)

Figure 2 The overall survival analysis showed that LCNEC patients who received a SCLC-based regimen survived longer than those who received an NSCLC-based regimen (P=0.029). LCNEC, large cell neuroendocrine carcinoma; SCLC, small cell lung cancer; NSCLC, non-small cell lung cancer.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Disease-free survival (HR, 95% CI, P value)</th>
<th>Overall survival (HR, 95% CI, P value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonsmoker vs. smoker</td>
<td>0.309, 0.128–0.744, 0.009</td>
<td>0.147, 0.046–0.486, 0.001</td>
</tr>
<tr>
<td>P-stage I vs. P-stage III</td>
<td>0.097, 0.036–0.265, <0.001</td>
<td>0.103, 0.032–0.330, <0.001</td>
</tr>
<tr>
<td>P-stage II vs. P-stage III</td>
<td>0.082, 0.023–0.294, <0.001</td>
<td>0.129, 0.034–0.484, 0.002</td>
</tr>
<tr>
<td>SCLC based regimen vs. NSCLC based regimen</td>
<td>0.391, 0.193–0.792, 0.009</td>
<td>0.420, 0.189–0.936, 0.034</td>
</tr>
</tbody>
</table>

Statistically difference at P<0.05. HR, hazard ratio; CI, confidence interval; SCLC, small cell lung cancer; NSCLC, non-small cell lung cancer.
a prognostic impact factor. However, they did not clarify the indication of adjuvant treatment after surgical resection. Perhaps most of the patients received postoperative chemotherapy in advanced pathological stage. Furthermore, in their study, the retrospective and multicenter design and the long recruitment period (over 17 years) may result in some bias. In recent years, the rate of complete resection and systematic nodal dissection has increased and the use of platinum-based adjuvant chemotherapy has become more systematic, which could explain the increased OS in our patients. The patients who did not receive post-operative adjuvant treatment were mainly due to their relatively poor physical conditions, intolerable or fear of the side effects. Previous reports showed that SCLC patients could benefit a lot from chemotherapy (20-22). Fournel et al. (23) reported that post-operative adjuvant chemotherapy was effective in stage I patients with LCNEC. We did not discuss this difference in our study, because of the very limited sample size and relatively insufficient follow-up time.

Due to the complex clinicopathological and biological features of patients with LCNEC, it remains unclear what constitutes an optimal chemotherapy regimen for LCNEC (14). Among others, Sun et al. insisted on treating LCNEC with SCLC treatment regime (24), while Varlotto et al. claimed that LCNEC should receive treatment similar to NSCLC (25). The database of Varlotto et al. used did not record the administration of chemotherapy, and therefore, it was a limitation of his study. In our study, there was a significant difference between SCLC- and NSCLC-based regimens in terms of the OS of patients. It was consistent with the findings of another study (26,27). In another report, 3-year and recurrence-free survival rates of 23 resected LCNEC cases treated with irinotecan plus cisplatin were 86% and 74%, respectively, indicating that this was an effective post-operative adjuvant chemotherapy regimen (28). There is currently an ongoing randomized phase III trial in Japan comparing irinotecan/cisplatin and standard etoposide/cisplatin adjuvant regimens in patients with completely resected LCNEC (29).

In conclusion, LCNEC is a rare, aggressive, and preoperatively difficult-to-diagnosis tumor that is associated with poor prognosis and high recurrence rates. Nevertheless, the results of this study suggest that LCNEC patients should receive adjuvant chemotherapy following surgical resection, preferentially with an SCLC-based chemotherapy regimen.

Acknowledgements

Funding: The authors would like to acknowledge support from the Grant No. 81572693 from the National Natural Science Foundation of China and Grant No. YG2015ZD14 from Medicine and Engineering Cross Foundation of Shanghai Jiaotong University.

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

Ethical Statement: This study has been approved by the ethics committee of Shanghai Chest Hospital (No. KS1707).

References

4. Travis WD, Linnoila RI, Tsokos MG, et al. Neuroendocrine tumours of the lung with proposed criteria for large cell neuroendocrine carcinoma. An ultrastructural, immunohistochemical, and flow cytometric
25. Kenmotsu H, Niho S, Ito T, et al. A pilot study of adjuvant chemotherapy...

Cite this article as: Han K, Yang H, Fan L, Zhao H. Outcomes of patients with large cell neuroendocrine carcinoma of the lung after complete resection. Transl Cancer Res 2017;6(3):483-492. doi: 10.21037/tcr.2017.06.14