A role for Inc-DILC in liver cancer stem cells

Tengfei Zhou¹, Fang Wang²

¹Department of Oncology, The No. 313 Hospital of PLA, Huludao 125000, China; ²Department of Medical Genetics, Second Military Medical University. Shanghai 200438, China

Correspondence to: Fang Wang, PhD. Department of Medical Genetics, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433 China. Email: wfsjr@163.com.

Provenance: This is a Guest Editorial commissioned by the Section Editor Dr. Xiu-Ping Zhang (Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China).

As the sixth most common malignant tumor, the mortality rate of hepatocellular carcinoma (HCC) is the second highest worldwide (1). Despite the great amount of progress regarding the diagnosis and treatment for HCC in recent years, the long-term survival of HCC patients remains unsatisfactory. Dismal prognosis and frequent recurrence of HCC has limited patients' survival (2). Therefore, new targets for HCC diagnosis and treatment and the strategy for research on HCC are required to be adjusted efficiently. Liver cancer stem cells (LCSCs) have the ability of self-renewal and multi-directional differentiation, which are considered to be the origin of HCC initiation, propagation, metastasis, relapse and chemo-resistance (3). However, the regulatory mechanism of LCSCs is still unclear. It is constructive to study the molecular mechanism of LCSCs in the pathogenesis of HCC progression. At the same time, finding new therapeutic targets regarding LCSCs is also significant. Recent studies found that long non-coding RNAs (IncRNAs), present widely in eukaryotes, are involved in the regulation of diverse physiological and pathological processes in various cancers. Some evidence has indicated that IncRNAs participate in the regulation of the occurrence and development of HCC (4), and play a role in the maintenance and differentiation of the HCC cells (5). However, there are still lots of gaps between the function and mechanism of IncRNAs in LCSCs.

We read a study carried out by Wang X et al, published in Journal of Hepatology (6), which identified the Inc-DILC (IncRNA downregulated in LCSCs) through high-throughput IncRNA microarray screening. The study not only elucidated biological function and molecular mechanism of Inc-DILC in LCSCs expansion both in vitro and in vivo experiments, but also explored the feasibility of using it as a marker and therapeutic target for HCC prognosis. The researchers found the Inc-DILC held a suppressive role in regulating the self-renewal of LCSCs, as the deletion of Inc-DILC was shown to enhance the expansion of LCSCs while overexpression of it suppressed the propagation. Experiments in vivo showed that Inc-DILC could inhibit the tumorigenicity of LCSCs and the growth of xenografted tumours bearing mice. It was confirmed that Inc-DILC regulated the IL-6/STAT3 autocrine signaling pathway by binding to the IL-6 promoter to inhibit the proliferation of LCSCs, which was proved through pull-down assay. Similarly, the influences on IL-6 transcription, STAT3 activation and LCSC expansion initiated by Inc-DILC depletion or Inc-DILC overexpression could be abrogated by the oligoribonucleotide mimics and an oligodeoxynucleotide decoy of Inc-DILC. The studies also found that Inc-DILC could mediate the crosstalk between IL-6/STAT3 cascade and TNF-α/NF-κB signaling pathway, which was an organic connection between the liver inflammatory microenvironment and LCSCs. Furthermore, their clinical studies showed that patients with low expression of Inc-DILC had significantly poorer prognosis compared to those with high expression of Inc-DILC. The researchers believed that their findings put forward a new theory of the molecular mechanism underlying LCSCs pathologic activities and the regulatory role of IncRNAs, and provided strong evidence for IncRNAs serving as new
prognostic markers and therapeutic targets for HCC.

Recently, a number of studies on IncRNAs and LCSCs have been reported, most of which are correlated to the increased expression of IncRNAs in LCSCs. Lately, Wang Y et al. found another elevated expression IncRNA—IncRNA TCF7 in human HCC and LCSCs by transcriptome microarray, which played a significant role in promoting self-renewal and propagation of LCSCs by activating Wnt signaling pathway (7). Meanwhile, it has been reported that LncRNA HOTAIR could inhibit the expression of SETD2 through inhibiting the binding of CREB, P300 and RNA polII with the SETD2 promoter for further enhancement of the malignant growth of LCSCs (8). The study of Guo et al. showed that IncRNA ICR combined ICAM-1 mRNA to form an RNA complex for enhancing the stability of ICAM-1 mRNA, which promoted the stemness of ICAM-1 LCSCs. The elevated expression of ICR and ICAM-1 in HCC tissues was associated with the occurrence of portal vein tumor thrombus (PVTT) and poor clinical prognosis (9).

It was also found that the expression of IncRNA DANCER in LCSCs was significantly increased, and overexpression of IncRNA DANCER could enhance the stemness and tumor formation ability of HCC cells, while the knockdown of IncRNA DANCER could weaken the stemness, which was closely related to the prognosis of patients with HCC (10). At present, original discoveries and therapeutic designs towards IncRNAs in LCSCs have become a hot spot and new direction in the diagnosis and treatment of HCC. We have identified that the IncRNAs serve as key modulators in the maintenance and differentiation of LCSCs, but the molecular mechanisms and regulatory roles of IncRNAs in LCSCs are still in their infancy.

The findings of Wang X et al. firmly showed us the suppressive role of Inc-DILC in LCSCs propagation, and opened a new way for us to explore the mechanism and function between IncRNAs and LCSCs, which was a big step forward in the study of IncRNAs in HCC (6). In the future, Inc-DILC may not only serve as a possible prognostic marker of HCC, but also as a potential therapeutic target towards LCSCs. However, the molecular mechanism and biological effect of IncRNAs, including the regulatory suppression mechanism for Inc-DILC in LCSCs, is worth to be confirmed and clarified. Future researches are expect to combine IncRNAs with known signaling molecules, miRNAs, transcription factors and epigenetic regulatory factors in LCSCs to complete and modify the IncRNAs regulation network in LCSCs, which might as well require the developments in new theories and techniques. All these work will be helpful for a more comprehensive understanding of the occurrence and propagation of HCC. Most importantly, it can bring new directions and new targets for the diagnosis and treatment of HCC.

Acknowledgements

None.

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

References

Cite this article as: Zhou T, Wang F. A role for Inc-DILC in liver cancer stem cells. Transl Cancer Res 2017;6(Suppl 6):S993-S994. doi: 10.21037/tcr.2017.06.30