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The future of cancer precision medicine lies in the rational 
design of effective therapies tailored to each patient 
based on the genetic makeup of their tumor. While the 
investigation of cancer genomes has successfully revealed 
cancer driver genes, leading to the development of targeted 
therapies, drug resistance is a major challenge in the clinic. 
The focus of this editorial is to highlight the potential of 
CRISPR-based genetic interaction (GI) maps in cancer 
cells to elucidate therapeutic targets, biomarkers, resistance 
mechanisms and combination therapy targets. We introduce 
the concept of GIs and their relevance to cancer therapy. 
We discuss systematic large-scale GI maps in mammalian 
cells using CRISPR-based technologies such as the 
CRISPR-cutting, CRISPR-interference (CRISPRi) and 
CRISPR-activation (CRISPRa) approaches. 

GIs and their relevance in cancer

Most biological and disease-related phenotypes are 
controlled by more than one gene. A GI between two 
genes, A and B, is defined as the deviation of the observed 
phenotype for combined perturbation of both A and B 
from the expected phenotype (Figure 1A). Analysis of such 
interactions can reveal functional relationships between 
genes. A GI can be “buffering” when the combinatorial 
perturbation of two genes result in a less severe phenotype 
than expected indicating the genes act in a linear pathway 
or encode subunits of a functional protein complex. When 
a combinatorial perturbation of two genes results in a toxic 

phenotype they exhibit “synergistic” interaction or in more 
severe cases, a “synthetic lethal” interaction indicating the 
genes act in a parallel or redundant pathways. 

Synthetic lethality

Synthetic lethal interaction between two genes A and B can 
be defined as one where the loss or inhibition of either gene 
does not substantially affect the survival of cells, whereas 
combined inhibition of both genes is highly toxic. Synthetic-
lethal gene pairs have an important role in cancer therapy. 
Cancer cell typically are dependent on genetic changes, 
which can be gain-of-function or loss-of-function events. 
A conceptually straightforward strategy to target cancers 
driven by gain-of-function events is the pharmacological 
targeting of the oncogene (Figure 1B). An early success story 
for such an oncogene-targeted therapy is the inhibition 
of Bcr-Abl fusion oncogene in Chronic Myelogenous 
Leukemia (1). It is conceptually much more challenging to 
devise targeted therapies for tumors that arose due to loss-
of-function events such as the loss or mutation of a tumor 
suppressor gene. Since the relevant gene was lost from 
tumor cells, it cannot be a direct pharmacological target. 
In those cases, synthetic lethal interactions can provide a 
therapeutic strategy (Figure 1B). A first successful example 
was the targeting of poly (adenosine-diphosphate ribose) 
polymerase (PARP) in breast cancers deficient in the tumor 
suppressor genes BRCA1/BRCA2 (breast cancer-associated 
proteins). BRCA1/2-deficient cells are hypersensitive to 
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PARP inhibition, suggesting synthetic lethality between 
BRCA1/2 and PARP (2). These studies led to successful 
use of PARP inhibitors such as Olaparib in several types 
of BRCA-deficient cancers, establishing a promise for 
synthetic lethality in cancer. 

Drug response and precision medicine

Cancer patients carrying the same oncogenic driver gene 
or tumor suppressor gene loss can respond differently to a 
given drug indicating the importance of genetic background 
of these patients. GIs between the drug target gene and 
the genetic background controls drug response in patients 
(Figure 1B). Understanding these interactions will enable 
rational selection of the optimal therapeutic strategy for 
each patient. One way of studying such interactions is by 
correlating response to therapy with tumor genome in a 
population of patients. A potential problem of these studies 
is that there are several genetic alterations and considerable 
heterogeneity not only between patients carrying the 
same driver-gene but also within the individual tumor, 
making it challenging to identify functionally relevant 
genes. Experimental determination of GIs can reveal 
genetic modifiers of drug response. One example approach 
is to identify biomarker genes in patients correlating to 
drug response to match patients with optimal therapeutic 
strategy. Predictive biomarkers can be helpful in excluding 
patients from receiving a therapy that will not benefit. For 
example, presence of KRAS mutation in colorectal cancer 
patients has shown poor response to the epidermal growth 
factor receptor (EGFR) inhibitor cetuximab as opposed to 
patients having wild-type KRAS (3).

Drug resistance and combination therapy

Cancer patients who initially respond to a given therapy 
frequently relapse due to drug resistant cancer cells. 
Tumors are typically composed of heterogeneous cancer 
cells with a spectrum of mutations, including loss-of-
function and gain-of-function events. Use of targeted 
inhibitors can kill the majority of tumor cells, but some 
cells may not respond to the inhibitor and/or develop 
resistance to the inhibitor. Cancer cells can be resistant to 
targeted therapy either through mutations in the direct 
drug target or through changes in other genes, such as 
activation of parallel pathways, or bypass of the cellular 
need for an oncogene by activation of downstream factors. 
Resistance mechanisms in genes other than the drug target 
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Figure 1 Genetic interactions and their implications for cancer therapy. 
(A) A genetic interaction between two genes (A,B) is defined as the 
deviation of the observed phenotype (P) for combined perturbation of 
both genes from the expected phenotype. Analysis of gene interactions 
can reveal functional relationship between genes; (B) genetic 
interactions in cancer cells determine the choice of the therapeutic 
strategy. In particular, synthetic lethal interactions enable targeting 
cancer cells that have undergone loss of function in a tumor suppressor 
gene. Genetic modifiers of response to targeted therapy can serve as 
biomarkers for patient stratification or as combination therapy targets 
to pre-empt drug resistance.
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are difficult to predict, but measurement of GIs can reveal 
potential resistance mechanisms. Knowledge of these 
mechanisms can enable the rational design of combination 
therapies targeting the primary oncogene and the potential 
resistance gene to preempt drug resistance (Figure 1B). A 
clinical example of a successful combination therapy is the 
treatment of HIV with a combination of three drugs that 
has led to marked improvement in patient survival and 
maintenance of the disease. Similarly, combination therapy 
in cancer has the potential to overcome drug resistance, as 
suggested by preclinical studies. For example, some non-
small cell lung cancer (NSCLC) patients have been shown 
to carry mutations in the receptor tyrosine kinase, EGFR, 
in their tumor cells. Downstream of EGFR, both the RAS-
MAPK and PI3K-AKT cell survival pathways are activated. 
Combined inhibition of the two parallel pathways—MAPK 
and PI3K pathways, has shown pre-clinical promise in 
synergistically killing NSCLC tumors both in vitro and  
in vivo (4,5).

CRISPR-based genetic approaches for 
mammalian cells

Tools for loss- and gain-of-function screens

Recent developments in genetic screening technologies 
have laid the groundwork for systematic forward genetics in 
mammalian cells. Until recently, the technology of choice 
for loss-of-function genetics in mammalian cells was RNA 
interference (RNAi). Although several improvements have 
been implemented in the RNAi system, it is still limited 
by its persistent off-target effects. Recently, CRISPR-
based approaches were introduced for genetic screens in 
mammalian cells. CRISPR/Cas9 can be programmed to 
introduce DNA double stranded breaks at specific genomic 
loci by the introduction of a combination of bacterial Cas9 
protein and single-guide RNA (sgRNA). In the absence of 
a donor DNA, this results in activation of non-homologous 
end joining (NHEJ) repair, which is error-prone and can 
result in frame shift deletions causing complete knockout of 
the targeted gene (Figure 2A). A variation of the traditional 
CRISPR-cutting system is the CRISPR-interference/-
activation (CRISPRi/a) system that enables both loss-of-
function and gain-of-function studies (6). The CRISPRi 
system utilizes a catalytically dead-Cas9 (dCas9) nuclease 
fused to a transcriptional repressor domain, Kruppel 
associated box (KRAB), resulting in transcriptional 
repression of specific target genes (Figure 2A). Compared  

to the CRISPR-cutting system, CRISPRi is inducible, 
reversible and non-toxic. The CRISPRi system can achieve 
different degrees of knockdown of genes, which may 
better phenocopy pharmacological inhibition of target 
genes with drugs, which is often partial. The CRISPRa 
system makes it possible to study gain-of-function events 
such as amplification or overexpression. The CRISPRa 
system utilizes the dCas9 to recruit transcriptional activator 
domains such as the VP64, resulting in transcriptional 
activation of specific target genes (Figure 2A). 

Primary screens to identify cell-intrinsic vulnerabilities 
and modifiers of drug response: several groups have used 
CRISPR-cutting and CRISPRi/a screens to identify 
novel intrinsic vulnerabilities in different cancer types. 
CRISPR-based screens can be performed in a massively-
parallel format, in which a population of cells is stably 
transduced with a pooled lentiviral library of sgRNAs 
targeting different genes after which cells are selected 
for the specific phenotype of interest (Figure 2B) .  
To identify genes essential for survival, cancer-specific 
driver genes and/or novel drug targets, a straightforward 
phenotype is proliferation or survival of cells, in other words 
“cellular fitness”. The fitness phenotype for a particular 
sgRNA can be quantified by comparing the frequency 
of cells expressing the sgRNA at an initial time point to 
that at a later time point, as quantified by next-generation 
sequencing. sgRNAs that show reduced frequency over 
time indicate genes required for cellular survival or 
proliferation. Such screens have revealed genotype-specific 
cancer vulnerabilities such as for the mutant oncogenic Ras 
cell lines (7-9), which can be interpreted as synthetic lethal 
genes with oncogenic Ras.

A variation of the growth-based screen is performed in 
the presence of a drug of interest and can reveal genetic 
modifiers of drug response, or drug-gene interactions. 
sgRNAs affecting sensitivity to the drug can be quantified 
by comparing frequencies of sgRNA in the untreated and 
drug-treated cell populations grown in parallel. Genes 
knockdown of which causes the cells to sensitize to the 
drug indicate potential combination therapy targets. For 
example, we found that knockdown of PI3Kd sensitizes 
acute lymphoblastic leukemia cells to dexamethasone, and 
predicted a drug synergy between dexamethasone and the 
PI3Kd inhibitor CAL-101/idelalisib (10). Conversely, genes 
knockdown of which causes the cells to desensitize to the 
drug indicate potential drug resistance mechanisms. In 
general, the expression levels of genes found to modulate 
drug sensitivity can be biomarkers predictive of drug 
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Figure 2 CRISPR-based experimental strategies to determine genetic interactions in cancer cells. (A) CRISPR-based gene perturbation. 
Loss-of-function approaches include: CRISPR-cutting, in which Cas9 nuclease mediated DNA cleavage directed to a target gene by a 
single-guide RNA (sgRNA) results in error prone DNA repair that can cause frame-shift mutations resulting in gene knockout; CRISPR 
interference (CRISPRi), in which a catalytically dead Cas9 (dCAS9) fused to a transcriptional repressor domain (KRAB) is recruited to the 
transcription start site (TSS) of the target gene by a specific sgRNA to repress transcription, resulting in gene knockdown. Gain-of-function 
approaches include CRISPR activation (CRISPRa), in which dCas9 programmed by a sgRNA recruits transcriptional activator domains 
(e.g., VP64) to the TSS of target genes, resulting in overexpression of the gene; (B,C) strategy for pooled genetic screens: Mammalian 
cells expressing the CRISPR machinery are transduced with lentiviral sgRNA library at a low multiplicity of infection (MOI), resulting in 
stable integration of one sgRNA per cell (for primary screens, B), or one sgRNA pair per cell (for the large-scale measurement of genetic 
interactions, GIs, C). The phenotype of each sgRNA or sgRNA pair can be monitored by determining the frequencies of cells expressing 
each sgRNA or sgRNA pair at an initial time point (t0) and at a later time point (tend) in the presence or absence of selective pressure, using 
next-generation sequencing. GIs are calculated for each gene pair from the measured growth phenotypes for the sgRNA pairs to construct a 
large scale systematic GI map. GI, genetic interaction.
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response in patients. An example from our own work is the 
finding that the response of multiple myeloma patients to 
the proteasome inhibitor carfilzomib correlates with pre-
treatment expression levels of 19S proteasome subunits (11). 
CRISPRi and CRISPRa in combination are particularly 
powerful at identifying and validating relevant cellular 
targets of anti-cancer drugs, since the sensitivity of cells to 
a drug often depends on the expression level of the direct 
target (12-14).

Systematic large-scale GI maps

Systematic quantification of pairwise gene interactions 
for a large set of genes results in a GI map. Such maps 
reveal individual gene pairs with strong GIs, including 
rare synthetic lethal interaction pairs that can be excellent 
candidates for therapy. Depending on their GI score 
genes can be clustered in a GI map that reveals genes 
in functionally related pathways. This enables one to 
understand functions of previously uncharacterized 
genes. While specific cancers can be driven by one of 
a small number of characterized oncogenes and tumor 
suppressor genes, there is a lot of heterogeneity in cancer 
aggressiveness and response to therapy indicating the 
importance of different genetic background. Performing 
such GI screens in cell lines having different genetic 
background will reveal genes that modify the driver gene 
effect.

Earlier, GIs were studied in an arrayed screening format 
where phenotype for gene-pairs is quantified individually. 
Although arrayed screens allow for multi-parametric 
phenotype analysis, conducting such screens in large scale 
can be challenging to implement (15). Performing GIs using 
pooled double-perturbations, which are massively parallel 
enable large scale GI maps in mammalian cells (Figure 2C). 
We introduced the first systematic GI map in mammalian 
cells using RNAi-based pooled genetic screen (16).  
Our strategy first identified high-confidence hit genes using 
an ultracomplex shRNA library for a specific phenotype 
following which we generated double-shRNA libraries to 
construct a GI map between the gene-pairs. More recently, 
similar approaches have been implemented based on 
CRISPR technology, including CRISPR-cutting (17-20),  
CRISPRi (21,22) and CRISPRa (23). We recently 
demonstrated that combined gain-and-loss of function GI 
maps leveraging orthogonal CRISPR cutting and CRISPRa 
approaches can enable the elucidation of directional 
pathway information (23). 

Pairwise genetic combinations from pooled screens 
enable highly parallel investigation of target combinations 
in a single experiment. In a recently published paper (19),  
Han and colleagues design a CRISPR-cutting based 
double knockout (CDKO) system to generate a large-
scale mammalian GI map comprising of 21,321 drug 
combinations and successfully identified synthetic lethal 
drug target pairs in K562 chronic myeloid leukemia (CML) 
cells. The authors rationally designed their gene-interaction 
library based on the following criteria: (I) druggable genes; 
(II) expression level in K562 cells; (III) growth phenotype 
from previous screens. The authors were able to successfully 
identify previously reported genetic pairs and GIs that can 
be explained by functional redundancy such as the PIM1-
PIM2; AKT1-AKT2 interactions. To validate the CRISPR-
based GI map, the authors developed a GI map for AB-type 
protein toxin ricin, for which extensive data on functional 
and GIs has been published previously (24). The GI map 
generated for ricin toxicity clearly identified a number of 
functional complexes as published previously validating their 
system. Moreover, synthetic lethal genetic pairs identified 
from the GI map validated using target-specific small 
molecule inhibitors, demonstrating these could recapitulate 
GIs from the DrugTarget-CDKO map. Systematic design 
of drug target gene pairs in this study robustly identified a 
potential strategy for combination therapy using BCL2L1 
and MCL1 inhibitors to prevent resistance in CML. 

Conclusions

The complex genetic heterogeneity of a tumor makes 
it essential to understand gene interactions and their 
therapeutic implications in cancer. Systematic GI maps are 
powerful tools for understanding gene functions within 
pathways or networks and identifying synthetic lethal 
gene interaction pairs revealing potential combination 
therapy targets. Previously combination therapies in cancer 
have been researched by array-based functional chemical 
approaches that test for combination of small-molecule 
inhibitors resulting in synergistic cytotoxicity (25). One 
major challenge with such approaches includes scalability 
of such approaches, and the fact that many drugs inhibit 
more than one cellular target. Current advances in genomic 
approaches such as the CRISPR-based technology have 
enabled systematic large-scale GI maps. Important future 
applications will need to address the interactions between 
tumor cells and their microenvironment, and investigate 
genetic determinants controlling response to promising new 
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immunotherapies. 
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