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Introduction

Hepatocellular carcinoma (HCC) is the sixth most common 
cancer and ranks second as a major cause of cancer-
related deaths globally (1,2). Moreover, its incidence has 
continuously increased in recent years. Approximately 
850,200 new cases of HCC are diagnosed annually 

worldwide, and more than half of these patients are in  
China (3). Almost 70–90% of HCC cases are related to 
hepatitis B virus (HBV) infection, which is highly endemic 
in Asia-Pacific regions, particularly China (4). Partial 
hepatectomy is among the potential curative therapies in 
limited patients. However, the 5-year recurrence rate of 
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HCC complicates 70% of cases after surgical therapies, 
and the overall time is still unsatisfactory (5,6). As such, 
screening patients who would benefit more from liver 
resection surgery is imperative.

Although the Barcelona Clinic Liver Cancer (BCLC) 
stage for HCC plays a crucial  role in est imating 
prognosis, by facilitating treatment stratification, it 
may not be sufficiently precise (7,8). Moreover, studies 
have reported that various clinical risk factors, such as 
aspartate transaminase (AST), alpha-fetoprotein (AFP), 
and microvascular invasion were associated with poor 
survival (9-12). However, the clinical utility of these factors 
is limited. Thus, to facilitate individualized treatment 
strategies, a new tool to accurately identify patients who 
would have poor prognosis after partial hepatectomy is 
urgently needed.

Radiomics is an emerging and promising field that 
involves the extraction of several quantitative features from 
digital images, such as magnetic resonance imaging (MRI) 
or computed tomography (CT) (13,14). Several studies have 
determined the relationship between radiomics feature and 
the underlying pathophysiology (15-17). By converting 
medical images into high-dimensional and extractable data, 
radiomics algorithms provide an unprecedented opportunity 
to improve decision-making in oncology at a low-cost and 
in a noninvasive pattern, which helps oncologists to deliver 
more individualized medical care that considers phenotypic 
patient subtypes. A recent study reported that a radiomics 
nomogram can predict preoperative lymph node metastasis 
in patients with colorectal cancer (18). Previous studies 
have also indicated that biomarkers based on quantitative 
radiomics features are related to clinical prognosis and 
underlying genomic patterns across a range of cancer types 
(19,20). Besides, a recent study demonstrated that a radiomics 
signature, based on CT texture assessments, was a predictive 
biomarker for 2-year recurrence in patients with HCC (21). 
However, the association between radiomics signature and 
disease-free survival (DFS) in HBV-related HCC patients 
after partial hepatectomy has not been reported yet (22,23).

The present study aimed to develop and validate a 
radiomics model of personalized, non-invasive evaluation of 
DFS in HCC patients after hepatectomy treatment. 

Methods

Patients

This retrospective study was approved by our institutional 

review board and Ethical Committee (NFEC-201208-K3). 
Informed consents were signed from patients or family 
members. Our study included consecutive patients in 
our center between Jan 2006 and Nov 2013 who met the 
following criteria: (I) pathologically proven HCC; (II) 
receive partial hepatectomy; (III) availability of 3-phase 
dynamic CT imaging within 7 days before surgery; and 
(IV) complete clinical and follow-up data. Besides, the 
exclusion criteria were as follows: (I) locoregional therapies, 
such as radiofrequency ablation and radiotherapy, or liver 
transplantation; (II) other liver malignant tumor; (III) two 
or more tumor diseases. We randomly divided the included 
patients into a training cohort and a validation cohort in a 
2:1 ratio. Pretreatment clinical characteristics were collected 
from electronic medical records. Institutional review 
board approval was achieved for this study. Recruitment 
pathways for patients and flowchart for the process of model 
development and validation were shown in Figures S1,S2, 
respectively.

Follow-up

DFS and overall survival (OS) were the primary and 
secondary end points of this study, respectively. DFS was 
defined as the time from the day of the partial hepatectomy 
until either the date of relapse, death, or the patient was last 
known to be free of recurrence (censored). Meanwhile, OS 
was defined as the time from surgery treatment to death 
from any cause. Follow-up visits were conducted every  
3 months during the first 2 years, and every 6 months for 
the next 3–5 years. All local recurrences were confirmed via 
MRI or CT at our center. 

CT acquisition, region-of-interest segmentation, and 
radiomic feature extraction

Preoperative CT images were collected via a Picture 
Archiving and Communication System (PACS; Nanfang 
Hospital  Network Center,  China).  More detailed 
information is shown in the Supplementary information.

Tumor reg ions  of  interes t  (ROIs)  were  semi-
automatically segmented in the largest cross-sectional area 
using the IBEX software package (open source, source-code 
version) (24). Texture extraction was performed using IBEX 
software In total, 980 imaging features were extracted from 
the hepatic-arterial and portal-venous images, including 
intensity direct, intensity histogram, gray level run length 
matrix (GLRLM), gray level co-occurrence matrix (GLCM), 
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neighbor intensity difference, and shape features. More 
information about the methodology for radiomics feature 
extraction can be found in Supplementary Method. Tumor 
ROIs were independently and manually segmented by 
an abdominal radiologist who had 12 years’ experience 
(reader 1) and another senior radiologist who had 22-year 
experience (reader 2). The both radiologists were blinded to 
the pathological results of the patients.

Inter- and intra-observer reproducibility analysis

Inter-observer and intra-observer reproducibility of ROI 
segmentation and radiomic feature extraction were assessed 
using intra-and inter-class correlation coefficients (ICCs) 
in portal-venous images of 44 consecutive patients. To 
evaluate the intra-observer reproducibility, 2 radiologists 
independently segmented the ROIs of the 44 cases. Both 
readers generated the radiomic features twice with at least 
one-week interval between two readings to assess the inter-
observer reproducibility. An ICC greater than 0.75 indicates 
a good agreement of the feature extraction. These values of 
many radiomic features, which describe the shape and size 
of the ROIs, can also be applied for evaluating the overall 
inter- and intra-observer agreement of the ROIs.

Feature selection and radiomics signature development

Using the least absolute shrinkage and selection operator 
(LASSO) algorithm, we built a logistic model and selected 
the λ in the smallest cross-validation error. Finally, a Rad-
score formula was defined based on the 19 selected features. 
A radiomics signature was then constructed via the Rad-
score. Using Kaplan-Meier survival analysis, we evaluated 
the potential relation between the radiomics signature and 
prognosis (DFS and OS) in the training and validation 
cohorts. The optimal cut-off value of Rad-score was 
determined using X-tile in DFS analysis. 

Development and validation of the radiomics nomogram

Multivariate regression analysis was performed to find a 
radiomics nomogram as a quantitative model to predict 
DFS. Candidate predictors of DFS were radiomics 
signature, BCLC stage, and AFP level.

The performance of the nomogram was evaluated in 
the internal validation cohort. DFS was then evaluated 
considering the total points as a factor in the Cox regression 
analysis. Finally, the C-index and calibration curves were 

derived using Cox regression analysis. Harrell’s C-index was 
evaluated to quantify the discrimination capability of the 
radiomics nomogram in the training cohort. The radiomics 
nomogram was internally validated using 10,000 bootstrap 
samples to achieve an optimism corrected performance.

Clinical utility

To evaluate the clinical utility of the nomogram, decision 
curve analysis (DCA) was used to quantify the probabilities 
of net benefits at different threshold in all patients.

Statistical analysis

All statistical analyses were performed via R statistical 
software version 3.3.3 (R Core Team, 2017). The “glmnet” 
package was used to perform the LASSO algorithm. The 
nomogram and the calibration curve plot were created using 
the “rms” package. The result of the Kaplan-Meier survival 
analysis was plotted using the “survminer” package, while 
that of the DCA was plotted using the “dca.R” package. 
A two-sided P value of <0.05 was considered statistically 
significant.

Results

Clinical characteristics 

One hundred and seventy-seven patients were finally 
included in our study, among which 113 patients were 
allocated to the training cohort and 61 to the validation 
cohort. The study flowchart for patients in our study is 
shown in Figure S2, with the baseline clinical characteristics 
of the training and validation cohorts summarized in Table 1.  
In the final follow-up, 99 patients (55.9%) had confirmed 
disease recurrence or died. The mean and median DFS 
were 22.1 and 16.0 months, respectively. Clinical and 
follow-up data were not significantly different between the 
training and validation cohorts (P=0.052–0.991) (Table 1).

Radiomics feature extraction and radiomics signature 
construction

Flowchart for the radiomics feature extraction process 
was shown. A total of 980 features were extracted from 
the hepatic arterial and portal venous CT images and 
were finally reduced to 19 features (13 from hepatic-
arterial images and 6 from portal-venous images) with 
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Table 1 Characteristics of patients in the training and validation cohorts

Variable Training cohort (n=113) Validation cohort (n=64) P value

Sex 0.542

Male 99 (87.6%) 58 (90.6%)

Female 14 (12.4%) 6 (9.4%)

Age (years) 0.195

<60 82 (72.6%) 52 (81.2%)

≥60 31 (27.4%) 12 (18.8%)

Child-Pugh classification 0.108

A 90 (79.6%) 57 (89.1%)

B 23 (20.4%) 7 (10.9%)

Hepatocirrhosis status 0.991

Yes 67 (59.3%) 38 (59.4%)

No 46 (40.7%) 26 (40.6%)

HBsAg status 0.052

Positive 92 (81.4%) 59 (92.2%)

Negative 21 (18.6%) 5 (7.8%)

ALT (U/mL) 0.373

Elevated 41 (36.3%) 19 (29.7%)

Normal 72 (63.7%) 45 (70.3%)

AST (U/mL) 0.844

Elevated 53 (46.9%) 31 (48.4%)

Normal 60 (53.1%) 33 (51.6%)

AFP (ng/mL) 0.651

<200 64 (56.6%) 34 (53.1%)

≥200 49 (43.4%) 30 (46.9%)

Tumor size (cm) 0.312

<5 53 (46.9%) 25 (39.1%)

≥5 60 (53.1%) 39 (60.9%)

BCLC stage 0.557

A 43 (38.1%) 20 (31.2%)

B 49 (43.4%) 33 (51.6%)

C 21 (18.6%) 11 (17.2%)

Follow-up time (months) 0.258

Median [IQR] 21.0 [6.0–42.0] 12.0 [6.0–31.5]

Mean ± SE 26.1±1.9 22.2±2.8

P value is derived from the difference between the training data set and the validation data set in either the clinical characteristics. 
AFP, alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BCLC, Barcelona Clinical Liver Cancer; MVI, 
microvascular invasion; IQR, inter-quartile range; SEM, standard error of Measurement; HBsAg, hepatitis B surface antigen. 
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the LASSO regression model (Figure 1). Based on the 
radiomic features describing the shape and size of the 
ROIs, the intra- and the inter-observer ICCs ranged from 
0.937 to 0.986 and from 0.935 to 0.985, respectively, 
indicating favorable intra- and inter-observer feature 
extraction reproducibility (Table S3).

As a result, the radiomics signature, including 19 features 
was significantly associated with relapse or death in the 
training cohort (Figure 2). The optimal cut-off value of the 
Rad-score was 1.32 using the X-tile software in the DFS 
analysis Figure S3. In the training and validation cohorts, 
patients with a high Rad-score showed poorer DFS than 
those with a low Rad-score (HR, 5.132; 95% CI: 2.894–
9.100; P<0.0001 and HR, 3.175; 95% CI: 1.442–6.991; 
P=0.00013, respectively). Furthermore, patients with a high 
Rad-score also showed poorer OS than those with a low 
Rad-score (HR, 7.329; 95% CI: 7.352–14.320; P<0.0001 
and HR, 6.849; 95% CI: 2.350–19.970; P<0.0001 for both 
cohorts). The distributions of the Rad-scores and DFS status 
in the two cohorts and all patients are shown in Figure S4.  
Meanwhile, the results of the sub-analysis of the survival 
in BCLC-A, BCLC-B, and BCLC-C stages were shown in 
Figures S5,S6.

Development and validation of the radiomics model 

Univariate analysis indicated that the radiomics signature, 

AFP level, and BCLC stage were significantly associated 
with DFS or OS both in the training and validation 
cohorts (Table 2,S4). Additionally, the multivariate Cox 
regression analysis showed that the radiomics signature 
and BCLC stage were independent predictors of prognosis  
(Table 3). Notably, AFP level was also an important 
predictor. Thus, a radiomics nomogram was developed 
based on the radiomics signature, AFP level, and BCLC 
stage (Figure 3). This model showed favorable C-indexes 
of 0.782 (95% CI: 0.730–0.834) and 0.743 (95% CI: 
0.657–0.829) for the training and the validation cohorts, 
respectively (Table 3). Besides, a good agreement between 
the nomogram-estimated probability and actual DFS status 
was noted and shown in the calibration curves (Figure 4A,B). 

Clinical utility

The DCA was estimated on the radiomics signature, BCLC 
stage, and radiomics nomogram, as shown in Figure 5. The 
decision curve of the radiomics signature and radiomics 
nomogram showed relatively good performance for the 
model regarding clinical application. It was indicated from 
the DCA curve that when the threshold probability of a 
patient or doctor is 15%, more benefit would be acquired 
using radiomics nomogram or radiomics signature than 
either treat-all or treat-none strategies. The probability 
of achieving DFS ranged from 38% to 80%. Both 
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Figure 2 Kaplan-Meier plots showing survival of low-risk and high-risk groups defined by the radiomics signature in both training (A,C) 
and validation cohorts (B,D). (A) Disease-free survival (DFS) of the training cohort; (B) DFS of the validation cohort; (C) overall survival (OS) 
of the training cohort; (D) OS of the validation cohort.

Table 2 Univariate analysis of disease-free survival based in the training and validation cohorts

Variable 
Training cohort (n=113) Validation cohort (n=64)

HR (95% CI) P value HR (95% CI) P value

Age (years) (≥60 vs. <60) 0.893 (0.499–1.598) 0.708 0.783 (0.349–1.758) 0.573

Sex (male vs. female) 0.858 (0.390–1.888) 0.682 0.831 (0.231–2.981) 0.752

Child-Pugh classification (B vs. A) 1.272 (0.657–2.463) 0.434 0.741 (0.260–2.109) 0.609

Hepatocirrhosis status (yes vs. no) 0.725 (0.422–1.244) 0.208 1.355 (0.705–2.601) 0.363

HBsAg status (positive vs. negative) 1.005 (0.510–1.979) 0.989 0.439 (0.100–1.912) 0.097

ALT (U/mL) (elevated vs. normal) 0.664 (0.397–1.111) 0.130 0.986 (0.503–1.936) 0.968

AST (U/mL) (elevated vs. normal) 1.516 (0.911–2.522) 0.101 1.379 (0.723–2.628) 0.321

AFP (ng/mL) (≥200 vs. <200) 2.045 (1.207–3.466) 0.004* 2.442 (1.266–4.711) 0.005*

Tumor size (≥5 cm vs. <5 cm) 1.888 (1.138–3.132) 0.015* 1.831 (0.959–3.493) 0.070

BCLC stage (C vs. A+B) 2.316 (1.131–4.743) 0.002* 3.165 (1.105–9.061) 0.0007*

Radiomics signature (high-risk vs. low-risk) 5.132 (2.894–9.100) <0.0001* 3.175 (1.442–6.991) 0.0001*

P values were obtained from the univariate association analyses between the DFS and each clinical factor. *, P value <0.05. AFP, alpha-
fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BCLC, Barcelona Clinical Liver Cancer; HBsAg, hepatitis B 
surface antigen. 
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radiomics nomogram and radiomics signature had higher 
overall net benefits than the single BCLC stage. Thus, 
either radiomics nomogram or radiomics signature is 
more accurate for discriminating patients who could 
benefit from partial hepatectomy than traditional BCLC 
staging system.

Discussion

In the present study, 82.31% of patients had HBV infection, 

which is the crucial pathogenic factor of HCC in Asia-
Pacific regions (4). Based on pre-treatment CT images of 
those patients, we developed a radiomics nomogram and 
validated this model as a tool for noninvasive, individualized 
prediction of DFS. The easy-to-use radiomics nomogram 
had an excellent performance and could help health care 
professionals in clinical decision making. 

The precise estimation of DFS via conventional CT 
images remains challenging in clinical settings. Currently, 
different staging systems combining image features (e.g., 
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Figure 3 Radiomics nomogram that incorporates the radiomics signature, BCLC stage, and AFP level for predicting 1-, 2- and 3-year 
disease-free survival (DFS) in the training cohort. BCLC, Barcelona Clinic Liver Cancer; AFP, alpha-fetoprotein.

Table 3 Preoperative prediction model of disease-free survival

Intercept and variable
Model 

β Hazard ratio (95% CI) P value

Radiomics signature 0.219 2.036 (1.564–2.649) <0.0001*

BCLC stage 0.397 2.213 (1.076–4.551) 0.030*

AFP level 0.401 1.493 (0.882–2.527) 0.135

C-index – –

Training cohort 0.782 (0.730–0.834)

Validation cohort 0.743 (0.657–0.829)

P values were obtained from the multivariate regression analysis between the DFS and each clinical factor.  *, P value <0.05. AFP, alpha-
fetoprotein; BCLC, Barcelona Clinical Liver Cancer; DFS, disease-free survival.
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tumor size and number) and clinical risk factors may also 
perform well (25-28). However, their levels of accuracy 
are unsatisfactory. We used a radiomics analysis model to 
transform images into high-dimensional radiomics features, 
which were used to estimate patient prognosis. We extracted 
490 features from each CT image and were then reduced 
to 19 radiomics features using the LASSO algorithm 
and chosen via 10-fold cross-validation to develop a 
radiomics signature. We found that patients with high 
Rad-score showed significantly poorer DFS or OS than 
those with low Rad-score. Previous studies also showed 
that the radiomics signature could be used to predict 
the prognosis of patients with advanced nasopharyngeal 
carcinoma or early non-small cell lung cancer (29-32). 
Similar to previous studies, our study indicated that 
this novel method predicting prognosis via radiomics 
features extracted from CT images may help clinicians 
accurately predict the prognosis of patients with HCC 
who underwent partial hepatectomy.

The BCLC staging system is a standard tool used 
for clinical management of HCC and can be used to 
determine the appropriate therapeutic strategy (33-36). 
However, treatment recommendations for patients with 
HCC vary in different staging systems. For example, the 
BCLC staging classification recommends only transarterial 
chemoembolization for patients categorized with stage B 
HCC, while the Japan Society of Hepatology stipulates 

that partial hepatectomy is feasible for such patients with 
acceptable prognoses. Therefore, the indications for 
partial hepatectomy differ among several staging systems. 
Subgroup analysis in our study showed that the Rad-score 
generated from the radiomics signature can easily identify 
stage B patients (classified according to the BCLC system) 
who would benefit more from the surgery. Interestingly, a 
small proportion of stage A patients (classified according 
to the BCLC system) with high Rad-score who underwent 
partial hepatectomy still have poor DFS, indicating that 
these patients should be given more attention on re-
examination. Moreover, although most stage C patients 
showed poor prognosis after partial hepatectomy, several 
patients with low Rad-score also obtained benefit from 
surgery.

In addition, previous studies have reported that several 
clinical risk factors, such as high AFP levels and large 
tumor size, were associated with poor prognosis in HCC 
patients (37,38). Univariate analysis of DFS and OS in 
the training and validation cohorts indicated that most 
clinical risk factors (e.g., age, sex, pre-treatment Child-
Pugh classification, pre-treatment hepatocirrhosis status, 
pre-treatment HBsAg status, pre-treatment alanine 
aminotransferase, and pre-treatment AST) were not 
significantly associated with prognosis. However, similar 
to previous studies, high AFP levels were also significantly 
associated with poor DFS and OS in both the training 
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and validation cohorts (39-41). Tumor size was associated 
with DFS and OS in the training cohort, while it was not 
associated with prognosis in the validation set. 

Considering the above factors, we developed a radiomics 
nomogram that incorporated the radiomics signature, 
BCLC stage, and AFP level. The nomogram can be a tool 
for developing an individualized treatment strategy. To the 
best of our knowledge, the use of pre-treatment radiomics 
signature for DFS prediction has never been reported. 
The radiomics model indicated favorable consistency in 
the training cohort, and the outcome was verified in the 
validation cohort (C-index, 0.782 and 0.743, respectively), 

which is shown as a calibration curve. Next, we plotted the 
decision curve based on the radiomics nomogram, radiomics 
signature, and BCLC stage in all the patients. DCA indicated 
that using the radiomics nomogram to estimate DFS when 
a threshold probability of a patient or doctor is 18%, higher 
benefits obtained than the overall or no treatment strategy 
in our study. The probability of achieving DFS with partial 
hepatectomy in patients classified according to BCLC stage 
ranges from 38–80%. We also found that both the radiomics 
nomogram and radiomics signature had higher overall net 
benefits than BCLC stage alone. 

Our study had two limitations. First, the numbers of 
patients with HCC was relatively small. Second, the data 
were collected from a single institution. If multicenter 
cohorts are enrolled and the collective data of different 
parameters are used, our model may perform differently. 
Thus, much larger datasets must be collected from multiple 
centers, and the robustness and reproducibility of our 
proposed radiomics model needs to be investigated. In 
summary, our model that comprised of radiomics features, 
BCLC stage, and AFP levels can serve as a non-invasive 
and preoperative tool to predict DFS in patients with HBV-
related HCC undergoing partial hepatectomy. This model 
can be used to decide more precise clinical treatments.
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Supplementary

Parameters for computed tomography image 
acquisition 

All patients underwent pre-treatment multi-detector row 
CT (MDCT) scans (SOMATOM and 256-iCT). The 
acquisition parameters were shown in Table S1.

CT acquisition

Contrast-enhanced computed tomography (CECT) 
was performed at our hospital with one of the following 
MDCT scanners :  SOMATOM (Siemens Medical 
Systems, Erlangen, Germany), or Brilliance iCT 256 
(Philips Healthcare, Cleveland, OH, USA). The scanning 
parameters are shown in Table S1. After routine CT 
scanning, a contrast agent (Ultravist 370, Bayer Schering 
Pharma, Berlin, Germany, 1.0 mL/kg) was injected 
into the antecubital vein at the rate of 2.0–3.0 mL/s  
via an injector (Ulrich CT Plus 150, Ulrich Medical, Ulm, 
Germany); a CECT was performed immediately after 
injection. The hepatic-arterial and portal-venous phase 
CT images were acquired at 30 and 60 s, respectively. 
Preoperative CT images were collected on the Picture 
Archiving and Communication System (PACS; Nanfang 
Hospital Network Center, China), with an optimal window 
setting adjustment (window width: 300, window level: 50).

Supplementary methods

In this study, a total number of 980 candidate radiomics 
features were derived from the arterial and portal-venous 
phase images with 490 for each. IBEX software package 
on MATLAB 2014b (Math Works, Natick, MA, USA) 

was used for feature extraction. The 980 features included 
intensity direct, intensity histogram, gray level run length 
matrix (GLRLM), gray level co-occurrence matrix (GLCM), 
neighbor intensity difference, and shape features.

Nineteen features that were most associated with 
DFS via a least absolute shrinkage and selection operator 
(LASSO) method. The features were shown in Table S2.

Radiomics score (Rad-score) calculation formula

Rad-score=−2.754e+04
−4.219e−01*A_NeighborIntensityDifference25_Texture 

Strength
−1.620e−02*A_IntensityHistogram_35PercentileArea
−5.090e−01 *A_IntensityHistogram_Kurtosis
+5.069e−02*A_IntensityDirect_LocalStdMax
−0*A_IntensityDirect_Kurtosis
−2.375e-02*A_IntensityDirect_GlobalMax
+1.653e+04*A_GLCM 25_90-1InverseDiffMomentNorm
+1.105e+04*A_GLCM 25_0-7InverseDiffMomentNorm
+6.111e+00*A_GLCM 25_135-7Correlation
−9.453e−01*A_GLCM 25_90-7Correlation
−6.162e+00*A_GLCM 25_-333-7Correlation
+3.916e+00*A_GLCM 25_45-4Correlation
+9.464e−01*A_GLCM 25_90-7ClusterShade
−2.757e−03*P_IntensityHistogram_10PercentileArea
+1.010e+00*P_IntensityDirect_LocalEntropyMin
−2.321e+01*P_GLCM 25_135-7InformationMeasureCorr1
+1.496e+01*P_GLCM 25_45-1Energy
−2.992e−01*P_GLCM 25_135-7DifferenceEntropy
−4.086e−03*P_GLCM 25_0-1ClusterProminence
P and A indicate that the features were retrieved from 

portal and arterial phase CT images, respectively.



Archived data of patients who underwent partial hepatectomy 

for histopathologically confirmed HCC between Jan 2006 

and Nov 2015. (n=762)

Inclusion of patients with triphasic dynamic CT images 

acquired within 7 days before treatment. (n=310)

Inclusion of patients with single lesions and availability of 

clinical data. (n=211)

Exclusion of patients with a history of locoregional therapy 

(radiofrequency ablation) or liver transplantation.

(n=34)

Eligible patients

(n=177)

Training cohort

(n=113)

Validation cohort

(n=64)

2:1

Training cohort

(n=113)  

Radiomics features

(n=980)

Construction of a nineteen-

feature-based radiomics 

signature

LASSO regression

Clinical risk factors

Multivariate COX regression 

analysis

Construction of a radiomics 

nomogram
Validation

Validation cohort

(n=64)

Figure S1 Recruitment pathways for patients.

Figure S2 Flowchart for the process of model development and validation.
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Figure S5 Kaplan-Meier plots showing disease-free survival (DFS) of low-risk and high-risk groups defined by the radiomics signature 
for patients. (A) A significant association of the radiomics signature with DFS was noted in the BCLC-A stage cohort; (B) the radiomics 
signature was verified in the BCLC-B stage cohort; (C) a significant association of the radiomics signature with DFS was noted in the 
BCLC-C stage cohort; (D) the radiomics signature was subsequently verified in the combined training and validation cohorts. BCLC, 
Barcelona Clinic Liver Cancer.
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Figure S6 Kaplan-Meier plots showing overall survival (OS) of low-risk and high-risk groups defined by the radiomics signature for patients. 
(A) A significant association of the radiomics signature with OS was noted in the BCLC-A stage cohort; (B) The radiomics signature was 
verified in the BCLC-B stage cohort; (C) A significant association of the radiomics signature with OS was noted in the BCLC-C stage 
cohort; (D) The radiomics signature was subsequently verified in the combined training and validation cohorts.



Table S1 Scanning parameters for each scanner

Parameter SOMATOM 256-iCT

Tube voltage (kVp) 120 120

Tube current (mA) Auto Auto

Detector collimation (mm) 64×0.6 128×0.625

Field of view (mm) 250–400 250–400

Pixel size 512×512 512×512

Rotation time (s) 0.5 0.4

Slice interval (mm) 0 0

Slice thickness (mm) 5 5

Reconstructed section thicknesses (mm) 1 1

Table S2 The texture type and  name of selection radiomic features

Texture type Texture name

NeighborIntensityDifference25 Texture strength

GLCM 25 0-1ClusterProminenceContrast, 135-7DifferenceEntropyHomogeneity, 
45-1Energy, 135-7InformationMeasureCorr1, 90-7ClusterShade, 45-4Correlation, 
333-7Correlation, 90-7Correlation, 135-7Correlation, 0-7InverseDiffMomentNorm, 
90-1InverseDiffMomentNorm

Intensity histogram 35PercentileArea, Kurtosis, 10PercentileArea

Intensity direct Local Entropy Min, Global Max, Kurtosis, Local Std Max

Table S3 Consistency of ROI radiomics features between inter-observers and intra-observers

Radiomics features Observer1-ICC (95% CI) Observer2-ICC (95% CI) Intra observer-ICC (95% CI)

Number of voxel 0.9667 (0.9394–0.9818) 0.9835 (0.9698–0.9910) 0.9860 (0.9744–0.9924)

Spherical disproportion 0.9757 (0.9556–0.9867) 0.9646 (0.9357–0.9807) 0.9516 (0.9125–0.9734)

Sphericity 0.9776 (0.959–0.9878) 0.9641 (0.9348–0.9804) 0.9534 (0.9156–0.9744)

Surface area 0.9390 (0.8902–0.9664) 0.9850 (0.9724–0.9918) 0.9808 (0.9649–0.9896)

Surface area density 0.9718 (0.9485–0.9846) 0.9771 (0.9473–0.9842) 0.9672 (0.9403–0.9821)

Volume 0.9488 (0.9076–0.9719) 0.9792 (0.9621–0.9887) 0.9792 (0.962–0.9887)

Compactness 1 0.9644 (0.9353–0.9805) 0.9802 (0.9638–0.9892) 0.9701 (0.9455–0.9837)

Compactness 2 0.9766 (0.9572–0.9872) 0.9565 (0.9213–0.9762) 0.9629 (0.9327–0.9797)

Convex hull volume 0.9358 (0.8847–0.9647) 0.9769 (0.9578–0.9874) 0.9452 (0.9013–0.9699)

Mass 0.9479 (0.9059–0.9714) 0.9790 (0.9616–0.9885) 0.9568 (0.9217–0.9763)

Mean breadth 0.9375 (0.8877–0.9656) 0.9821 (0.9672–0.9903) 0.9375 (0.8877–0.9656)

ICC, intra-or inter-class correlation coefficient.



Table S4 Univariate analysis of overall survival in the training cohort and validation cohort

Variable 
Training cohort (n=113) Validation cohort (n=64)

HR (95% CI) P value HR (95% CI) P value

Age(years) (≥60 vs. <60) 0.927 (0.461–1.868) 0.835 0.967 (0.329–2.899) 0.965

Sex (male vs. female) 0.613 (0.232–1.618) 0.227 0.607 (0.100–3.678) 0.494

Child-Pugh classification (A vs. B) 1.656 (0.748–3.666) 0.105 0.477 (0.110–2.069) 0.456

Hepatocirrhosis status (yes vs. no) 1.006 (0.528–1.918) 0.984 0.838 (0.343–2.046) 0.689

HBsAg status (positive vs. negative) 1.528 (0.682–3.419) 0.366 2.977 (0.482–18.370) 0.240

ALT (elevated vs. normal) 0.729 (0.389–1.367) 0.340 0.859 (0.349–2.116) 0.742

AST (elevated vs. normal) 1.775 (0.958–3.287) 0.064 3.616 (1.503–8.697) 0.012*

AFP (≥200 vs. <200) 2.316 (1.222–4.391) 0.005* 2.847 (1.162–6.98) 0.017*

Tumor size (≥5 vs. <5 cm) 2.107 (1.142–3.887) 0.021* 1.987 (0.824–4.788) 0.144

BCLC stage (C vs. A+B) 2.688 (1.171–6.174) 0.001* 6.936 (1.668–29.060) <0.0001*

Radiomics signature (high risk vs. low risk) 7.329 (3.752–14.320) <0.0001* 6.849 (2.350–19.970) <0.0001*

P values were obtained from the univariate analyses of the association between overall survival and each clinical factor. *, P value<0.05. 
AFP, alpha-fetoprotein; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BCLC, Barcelona Clinical Liver Cancer; HBsAg, 
hepatitis B surface antigen. 


