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In 2016, with the publication of the novel guidelines for the 
classification of the central nervous system (CNS) tumours 
by the World Health Organization (WHO) (1), there was 
a paradigm shift in the classical diagnosis, mainly based 
in microscopy, by the integration of molecular markers in 
the novel stratification. Due to the intrinsic limitations of 
the collected CNS study material and the majority of the 
conservative procedures that ends in scarce material, and 
sometimes of difficult histology, this added value of the 
molecular data introduced a significant advance in tumour 
homogenous classification. The genetic classification is based 
on canonical events that have been collected throughout 
the recent years (2-5). Regarding the pivotal events that are 
used to stratify glioblastoma (GBM), we have the mutations 
in the isocitrate dehydrogenase 1 and 2 (IDH) genes (2,5) 
and in the promoter of the telomerase gene (TERTp) (5-10).  
These alterations are used to aid in the diagnosis of up 
to 80% of GBM and can cluster patients with distinct 
prognostic features (5). With the molecular subgroups there 
is also an association for a particular mechanism used for 
telomere maintenance. Telomere maintenance can rely in 
mechanisms that are dependent in telomerase re-activation or 
re-expression, or in a telomerase non-dependent mechanism, 
the so-called alternative mechanism for telomere maintenance 
(ALT) (11). In a telomerase re-activation setting, TERTp 
mutations are so far recognized as the most frequent event 
and have been reported in several human cancers (6,8,12-15).  
In an ALT mechanism setting, the Alpha Thalassemia/
Mental Retardation Syndrome X-Linked (ATRX) and Death 

Domain Associated Protein (DAXX) gene mutations were 
documented as the most frequently altered genes and were, 
until the study by Diplas et al. (16), the only known genes to 
be directly involved in ALT mechanism promotion. TERTp 
mutations are present in about 70% of IDH-wildtype GBM, 
associated with older patients that present a poorer prognosis 
with a shorter survival; this subgroup represents up to 90% 
of GBM (1,5). The remaining are IDH-mutant GBM, and 
present ATRX mutations in 70% of the cases (with ALT 
phenotype); this subgroup is composed of younger patients 
and presents a better outcome with increase overall survival 
(OS) when compared with the previous (1,4,5,8). In the study 
by Diplas et al. (16), the authors set to determine the genetic 
landscape of TERTpWT-IDHWT GBM. For this purpose, they 
identified a cohort of 16.9% of TERTpWT-IDHWT GBM from 
a series of 260 GBM that had been previously studied (5);  
of these, when 1p/19q co-deletion status was available it was 
negative, in this way this subset lack the three main glioma 
markers (TERTpWT-IDHWT-1p/19qWT)—triple negative 
tumours (17). The whole exome sequencing of this subgroup 
presented recurrent mutated genes in classical pathways as the 
RTK/RAS/PI3K (88%), P53 (40%), and RB (24%) pathways, 
as well as, copy number variations in PDGFRA (8%), MDM2 
and MDM4 (12%) and CDKN2B (12%) genes. Analysis for 
glioma-associated driver alterations identified mutations 
in classical associated genes as PTEN (32%), NF1 (24%), 
EGFR (28%), TP53 (24%), ATRX (20%), and BRAF (20%), 
and in two novel candidate drivers that were not previously 
associated with GBM, SMARCAL1 (16%) and PPM1D (8%). 
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The results obtained revealed several interesting findings. 
There was an enrichment of BRAF (V600E) mutations (20%) 
in the TERTpWT-IDHWT GBM, whereas BRAF alterations 
that were previously associated to low-grade pediatric 
gliomas, being rare in adult gliomas (18,19), had a high 
representation in this subgroup; with 80% of the patients 
being less or equal than 30 years old. The second novelty 
with this study was the detection of mutations in SMARCAL1 
and PPM1D as novel gliomagenesis genes. The SMARCAL1 
gene, that stands for the SWI/SNF Related, Matrix 
Associated, Actin Dependent Regulator Of Chromatin, 
Subfamily A Like 1 protein was the main focus of the study 
since it encodes an adenosine triphosphate (ATP)-dependent 
annealing helicase responsible for rewinding of Replication 
Protein A (RPA)-bound DNA at stalled replication forks 
for resolving telomere-associated replication stress (5); such 
similarity with ATRX function, also a member of the SWI/
SNF family of chromatin remodelers, made it immediately an 
attractive candidate (16,20,21). All these facts led the authors 
to expand the cohort of TERTpWT-IDHWT GBM, and in 21% 
of these cases, SMARCAL1 mutations were detected. Given 
the similarities with ATRX, it was determined if SMARCAL1 
inactivation was comparable to ATRX loss-of-function, and 
ALT initiation. The authors performed a battery of assays 
demonstrating classical ALT phenotypic features (16,20,21), 
such as the presence of ultrabright telomeric foci and C-circles 
and establishing a novel link of a gene to ALT development. 
Additionally, SMARCAL1-mutant GBM were mutually 
exclusive of GBM with ATRX loss of expression, reinforcing 
the independent contribution of each gene for the ALT 
mechanism. However, the authors noted that still other 

mechanisms should be involved because 61.5% of TERTpWT-
IDHWT GBM remained without a telomere maintenance 
mechanism. To decipher further mechanisms, it was taken a 
whole genome sequencing approach in 8 TERTpWT-IDHWT 
GBM and structural variants (SV) of TERT were identified 
in 75% of the cases. This structural alteration consisted in 
half of the cases in translocations to other chromosomes 
and in the remaining cases in inversions within the same 
chromosome. In the expanded analysis of the TERTpWT-
IDHWT GBM for TERT SV identification, the authors used 
break-apart FISH probes and found that half of the cases 
presented TERT structural rearrangements. Functionally, 
TERT-rearranged GBM expressed significantly higher 
levels of telomerase in comparison with the ALT-positive 
(ATRX- or SMARCAL1-mutated GBM) but with no striking 
differences in comparison with TERTp mutated GBM.
All the previous data together allowed the creation of new 
genetic subgroups of TERTpWT-IDHWT GBM (Figure 1).  
Within the previous IDHWT-ALT subgroup we are now 
aware that besides ATRX mutations (with absence of 
IDH and TP53 mutations), there was a fraction of cases 
that presented SMARCAL1 mutations (38.5%), a novel 
mechanism with phenotypic markers compatible with 
ALT. The SMARCAL1-mutant GBM contrary to the 
ATRX-mutated GBM often presented mutations in TP53 
as well as in PTEN and NF1; such co-occurrences may be 
necessary for gliomagenesis. In addition to the subgroups 
with ALT, we have the IDHWT GBM subgroup that rely 
on telomerase re-expression due to TERT SVs. Altogether, 
this novel genetic events account for more than 80% of the 
TERTpWT-IDHWT GBM. In the study by Diplas et al. (16), 

Figure 1 Novel genetic subtypes of gliomas defined in the study by Diplas et al. (16). TMM, telomere maintenance mechanism; WT, wild-
type; MUT, mutations; AMP, amplification; SV, structural variation; DEL, deletion; GBM, glioblastoma.
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it was also evaluated how this subgroup genetic integration 
impacts patients’ survival. Both IDHWT GBM, either with 
ALT or with TERT SVs exhibited the poorest OS (14.9 and  
19.7 months, respectively), similarly to the IDHWT GBM 
with TERTp mutations (OS: 14.7 months); contrasting with 
the better outcome of GBM patients with IDH mutations 
and absence of TERTp alterations (OS: 37.1 months).

Apart from the definition of these novel subgroups of 
TERTpWT-IDHWT GBM, there was also a novel finding, the 
discovery of a new gene associated to ALT. The authors 
created a set of experiments to elucidate SMARCAL1 
contribution for this process. The first approach was to 
start with cancer cell lines that presented mutations in 
this gene and to evaluate if these cell lines recapitulated 
the findings detected in the human GBM samples. Both 
SMARCAL1-mutant cell lines had abolished expression of 
the SMARCAL1 protein and maintained intact expression 
of ATRX and DAXX. Still, ALT phenotypical markers were 
present and included ALT-associated promyelocytic leukemia 
(PML) bodies (APBs), DNA C-circles, and the classical 
ultrabright telomere DNA foci by FISH (22); exogenous 
expression of SMARCAL1 was able to restore, or partially 
restore, the previous changes. The second approach went the 
opposite way and was the evaluation of GBM cell lines after 
CRISPR/Cas9 gene removal of the SMARCAL1 gene. Under 
this approach, isogenic SMARCAL1−/− GBM cell lines were 
assessed for the ALT markers, and it was observed that there 
was a significant increase of C-circles, ultrabright telomere 
foci formation and APBs presence; this increase was more 
evident when the alterations that targeted SMARCAL1 
helicase domains, pointing its domain important role.

Overall, in the study by Diplas et al. (16), two novel 

subgroups of TERTpWT-IDHWT GBM were identified. They 
represent two genetically defined GBM subgroups, IDHWT-
ALT and IDHWT-TERTSV that present similarities with the 
established IDHMUT and TERTpMUT, both subgroups relying 
in novel genetic alterations result in ALT-mediated or 
telomerase-mediated mechanisms for telomere maintenance 
with novel alterations (Figure 1). Within the gliomas, 
SMARCAL1 mutations seem to be rare in lower-grade gliomas 
(WHO grade II–III) and only present in high grade gliomas 
(WHO grade 4); also, TERT SV were only detected in GBM 
(WHO grade 4). The detection of a high frequency of BRAF 
mutations was a novelty that opens a new therapeutic option 
for this subgroup of patients younger than 30 years old, since 
this is an alteration that is drug-targetable. It remains now to 
be understood what is the true expression of this novel gene 
associated to ALT, the SMARCAL1 and its prevalence within 
cancer. In a short overview of the cancer genomic data accessed 
in cBioPortal (23,24) for cancer genomics (Figure 2) we 
detected that, besides GBM, several cancers present mutations 
in SMARCAL1 and despite the prevalence of these alterations 
to be inferior to 3% it may be useful to select patients with 
particular clinicopathological features.
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Figure 2 SMARCAL1 mutations within several cancer types present in cBioPortal (23,24). 
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