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Background

Recent modern technologies have advanced cancer research 
with new discoveries (1-14). These new technologies, 
such as genomic data and image data, often generate huge 
amount of information; however, analysis of such big 
data has not been straightforward. Principal component 
analysis (PCA) is one common approach to deal with the 
high-dimensional data by reducing data dimension into 
a manageable and analyzable scale. The PCA has shared 
many fruitful stories in cancer research in terms of genomic 
profiling discoveries and personalized medicine (1-7). For 
example, in gene microarray data analysis, Khan et al. (3) 
tried to use gene expression data to classify patients with 
the small, round blue cell tumors into several subgroups 
for specific treatments. Their approach first applied PCA 
to reduce data dimensionality. The resulting 10 PCA 
components were then used for analysis of artificial neural 
network which later correctly classified disease subtypes and 
identified the genes most associated with the subgroups. 
Similarly, Pomeroy et al. (6) used PCA to reduce gene 
expression data into three PCA components which were 
able to separates brain tumors from normal brain tissues, 
as well as to distinguish various brain tumor subtypes. In 
addition, Chen et al. (7) utilized PCA to derive a risk index 

score for various gene signatures in different cancers to 
evaluate prognostic and predictive values of the signatures. 
In the analysis of single nucleotide polymorphisms (SNPs), 
population stratification is often used to control for 
systematic ancestry differences in genome-wide association 
studies, but it could generate false associations. To detect 
and correct population stratification, Price et al. (5) 
employed PCA to minimize spurious associations while 
maximizing power to detect true associations. By using 
this approach, Hunter et al. (4) discovered four SNPs with 
risk of sporadic postmenopausal breast cancer in a genome-
wide association study. In image analysis, Seierstad et al. (2) 
used PCA to summarize massive data generated from 
magnetic resonance spectroscopy. The resulting reduced 
data (PCA components) were able to separate clusters of the 
different xenografts and rectal cancer biopsies and to reflect 
underlying differences in metabolite composition.

While enjoying successful use, one drawback in PCA 
limits its broad application. That is, PCA reduces data 
into a lower dimension space, called principal components 
(PCs), to mimic the original data. The 1st PC explains the 
maximum of total variation, the 2nd PC explains the 2nd 
largest variation, and so on. Each PC is a weighted average 
of all variables (e.g., genes or image features) with a weight 
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(called loading coefficient) assigned to each variable. This 
formula raises a serious concern that if a variable is a noise 
(meaning no true effect in the model), would it be better to 
exclude the variable during constructing PCs so that they 
become more robust? The standard PCA use all the variables 
for each PC regardless if a variable is a noise. As a result, 
the approach will generate PCs likely contaminated with 
noise such that the resulting PCs may deviate away from the 
originate data. A new branch of PCA, called sparse principal 
component analysis (sparse PCA), has recently evolved 
to address this issue. Sparse PCA combines the strength 
of classic PCA, data reduction, with sparseness modeling, 
which excludes ineffective variables from the PCA model by 
shrinking the loadings of these variables into zero. 

In the followings, we briefly review PCA and the 
evolution of sparse PCA. Three types of sparse PCA are 
discussed. A simulation study is given to highlight their 
differences. One data example is given to illustrate the 
potential applications of sparse PCA in cancer research.

Principal component analysis (PCA)

PCA is a powerful data reduction method. It converts high-
dimensional data into a few numbers of variables, called a 
set of uncorrelated principal components (PCs), with a hope 
that this low-dimensional space (PCs) will well represent 
the original data. Each PC is a linear function of original 
variables to maximize variance in the original set. The 
weight in the linear function is called loading coefficient 
of the PCs and is the basis of the low-dimensional space. 
Thus, the constructed PCs become new coordinates in the 
new system. Alternatively, PCs can be viewed as the points 
that the original observations are projected onto a low-
dimensional space with the aim to be close as possible to the 
original data set. For example, gene expression data include 
thousands of genes (original data). It is a challenge to 
analyze this raw high-dimensional data. However, if we can 
use PCA to reduce data into a few PCs, say 3 PCs, standard 
statistical methods, such as linear regression or logistic 
regression models, can be easily applied.

Evolution of sparse PCA 

In PCA, each PC is a linear combination of all variables even 
if some of the variables have little contribution. This issue 
becomes more problematic when the number of variables 
is very large such as high-dimensional genomic data. For 
example, in microarray data containing thousands of genes, 

only a handful of genes, but not all genes, associate with 
cancer. So there is a need to identify key genes associated 
with cancer and exclude irrelevant genes in PCs. Several 
simple approaches were developed to fix the problem. 
Navarro Silvera et al. used a fixed threshold, 0.2, to force 
genes with loading coefficients below the cutoff to zero in a 
gastric cancer research (15). Hausman and Vines proposed 
a method to convert all loading coefficients into a set of 
discrete-valued loading coefficients, [–1, 0, 1], so that the 
effect of each variable on each PC can be clearly identified 
(16,17). Another strategy is based on variable selection 
criteria to select a subset of the original variables so that the 
chosen subset can effectively approximate the PCs (18,19). 
While these approaches look appealing, significant drawbacks 
exist, such as how to determine the threshold value and what 
the best discrete-valued loading coefficients would be (20).

Following the shrinkage concept but not restricting 
the nonzero loadings to a discrete set of values, sparseness 
modeling has been recently developed with the purpose to 
shrink small negligibly estimates to zero via some forms 
of penalty function. The common approach for sparseness 
used in PCA is least absolute shrinkage and selection 
operator (LASSO) method developed by Tibshirani (21). 
The LASSO was originally used in linear regression model 
for variable selection by imposing a function to measure 
degree of error, called sum of the absolute values of error 
components (mathematically, it is called L1-penalty 
function) to shrink variables. The LASSO was later adapted 
in PCA and evolved into various sparse PCA methods. 
Existing statistical methods with sparseness concept include 
sparse PCA (22-27), sparse factor analysis (28,29), sparse 
singular value decomposition (SVD) (30-32), and sparse 
support vector machines (SVM) (33), etc.

Here we discuss three types of sparse PCA which are 
divided into four different approaches. The three types are 
variance maximization (VM), projection minimization, and 
probabilistic model (PM). All of them can be used to derive 
PCA. To achieve sparseness, the L1-penalty function is added 
in the PCA estimation process. A summary is given in Table 1. 

Variance maximization (VM) approach

The approach aims to project data points into a low-
dimensional space (data reduction) with a goal to preserve 
their variation of original samples points as much as possible. 

Mathematically, assume that X represents original data 
(a n samples by p variables matrix), the corresponding first 
loading coefficient vector is V1, and the corresponding PC is 
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XV1. Maximization of the variance of XV1 can be expressed 
by the form: 

[1]maxV V X XV V V
1 1 1 1 1 1′ ′( ) ′ =subject to

By imposing a L1-penalty function ( V Vii

p
1 1 11
=

=∑ , where 
|•| is the absolute value) in the Eq. [1], it becomes a sparse 
PCA:

[2] maxV V X XV V V V
1 1 1 1 1 1 1 1 1′ ′( ) + ′ =λ subject to  

The λj, j =1, 2, ···,k, is a penalty parameter that controls 
the amount of shrinkage on each PC. The larger the value 
of λj, the greater the amount of shrinkage (i.e. the greater 
the amount of zero estimates). Algorithm to implement 
the VM includes Trendafilov and Jolliffe (34) and Croux, 
Filzmoser (35) with an available R package, pcaPP.

Projection minimization is another way to compute 
PCA. The method targets the minimum distant between 
the projected data and the observed data. Thus, PCA can be 
alternatively modeled as the following formulation where V 
is the loading coefficient matrix.

[3] minv i ii

n
kx VV x V V I− ′ ′ =

=∑ 1

2
subject to  

Two strategies are evaluated here to perform sparseness 
while conducting projection minimization for PCA.

Reconstruction error minimization (REM)

Zou and Hastie (22) reconstructed the product of the loading 
coefficient matrix, ′V V , into two matrices (A, B) and add a 
L2-norm penalty on B, so the formulation of PCA becomes

[4]min ,A B i ii

n
jj

k
kx AB x B A A I− ′ + ′ =

= =∑ ∑1

2

1

2
λ subject to  

where A and B are both p×k matrix, B Bj tjt

p2

1

2
= ( )=∑ and λ is 

the penalty parameter. The solution of B is equivalent to the 

ridge regression problem, and then the jth loading is V
B
Bj
j

j

= , 
j =1, 2, …,k.

To impose sparseness, a L1-norm penalty on B is added 
to obtain sparse loadings, and the formula becomes

[5]

whereas a common λ is used for all PCs, but different λj's are 
allowed for penalizing the loadings of different PCs. This 
approach can be expressed in another way by performing 
alternating estimation for the solution of Eq. [5], i.e., 

Table 1 Summary of sparse PCAs: VM, REM, SVD, and PM

Sparse PC
Available code

Original PC Penalty function/prior

(I) VM
maxV V X XV V V

1 1 1 1 1 1′ ′( ) ′ =subject to

Then the subsequent PCs solve the 

same problem with orthogonal constraint

||Vj||1 < tj R package: pcaPP (with BIC selection) 

Croux, Filzmoser (34)

Projection 

minimization
minv i ii

n
kx VV x V V I− ′ ′ =

=∑ 1

2
subject to

||Vj||1 < tj

||Bj||1 < tj

(II) REM (regression 

approach)

R package: elasticnet (selected 

manually)

Zou, Hastie (22)

(III) SVD ||Vj||1 < tj R package: PMD (with CV selection)

Witten, Tibshirani (26)

R code: https://www.unc.

edu/~haipeng/ (with BIC selection)

Shen and Huang (24)

(IV) PM X = VZ + ε,
f(Zi)~N(0,Ik) and f(ε)~N(0,σ2Ip)

f V Vi
j j

ij( ) = −










1
2

2 2
λ λ
exp

R package: nsprcomp (selected 

manually)

Sigg and Buhmann (31)

PCA, principal component analysis; VM, variance maximization; REM, reconstruction error minimization; SVD, singular value 

decomposition; PM, probabilistic model; BIC, Bayesian information criterion; CV, cross validation.

min ,A B i i
i

n

x AB x− ′
=
∑ 2
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subject to B s A A Ij
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∑ < ′ =
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X UDV− ′ 2
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https://www.unc.edu/~haipeng/
https://www.unc.edu/~haipeng/
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estimate one of parameter when the other is fixed. In other 
words, estimating B given A is the elastic net regression 
estimation (36); on the other hand, estimating A given B is 
a reduced rank Procrustes rotation problem. A R package, 
elasticnet, is available to perform the REM (22).

Singular value decomposition (SVD)

Another way to reconstruct the product of the loading 
coefficient matrix, ′V V , is to use SVD to extract the PCs 
through solving a low rank matrix approximation problem. 
Mathematically, let the SVD of X be X=UDV', where U 
is an n by k orthogonal matrix, U is an p by k orthogonal 
matrix, and D is a k by k diagonal matrix and assumed to be 
ordered so that d1>d2>…>dk. Consequently, the estimation 
of U, D, and V can be formulated as the following 
optimization problem:

[6]min , ,U D V F k kX UDV U U I V V I− ′ ′ = ′ =2 subject to and

Shen and Huang (24) introduced a L1-norm penalty 
in Eq. [6], to promote sparse loadings, and the penalized 
mathematical formula becomes

[7]

where λj is the penalty parameter for each component. 
There are two R functions available to this sparse PCA. 
One is PMD R package using cross validation (CV) to 
determine the penalty parameter (26). The other is a R code 
(https://www.unc.edu/~haipeng) using Bayesian information 
criterion (BIC) to select the penalty parameter value (24). 

Probabilistic modeling (PM)

PCA can be also reformulated as a maximum likelihood solution 
to a latent variable model, called probabilistic PCA (37). The 
PM for PCA is represented by

[8]X VZ= +ε

where Z is PCs whose row vector is consider as an 
k-dimensional latent variables, λ is the noisy, and both 
the latent variable and noise are assumed to be isotropic 
normal distribution, f(Zi)~N(0,Ik) and f(ε)~N(0,σ2Ip). Then, 
the marginal distribution of X is normal distribution 
with zero means and covariance, V'V+σ2Ip. Estimation of 
the parameters V and σ2 can be done by the maximum-
likelihood function. 

To perform sparseness on loading coefficients, we can assign 

Laplacian prior to each element of loadings in the PM [the 
Laplacian prior is equivalent to L1 regularization in the sparse 
modeling (38)]. The resulting sparse probabilistic PCA is to 
estimate the following parameters
X VZ= +ε

[9]
f V V f Z N I f N Iij

j j
ij i k p( ) = −









 ( ) ( ) ( ) ( )1

2
2 2 0 0 2

λ λ
ε σexp , , , 

The Bayesian solution, such as variational expectation-
maximization (EM) algorithm (27,39) or Markov Chain Monte 
Carlo algorithm (40), can be used to estimate the parameters. 
A R package, nsprcomp, is available to run this approach (39).

Finally, the performance of sparse loading depends on the 
penalty parameters, λj, because the λj determines the degree 
of sparseness of loadings. Usually, selecting the optimal values 
of λj can use cross-validation (CV) or BIC: CV is to choose 
a set of penalty parameters such that there is a minimum 
prediction error when we divide the samples into testing and 
training dataset, and use the estimates of training dataset to 
predict testing dataset; BIC composes of the measurement of 
estimation error and the degree of freedom of model. The 
estimation error is the distant between the data and estimates, 
and Zou, Hastie (41) has shown that the degree of freedom 
of lasso is the number of non-zero coefficients. 

Simulation
 

Approaches for comparison

A simulation study is conducted to compare the performance 
of the four sparse PCA approaches and the classic PCA: (I) VM 
using the R package, pcaPP; (II) REM using the R package, 
elasticnet; (III) SVD: two algorithms are considered: one with 
BIC (SVDb), and the other with CV (SVDc) using the R 
package, PDM; (IV) PM using the R package, nsprcomp. 

Design

The simulated data, X, is generated from normal distribution 
with zero mean and covariance, VV' + Ip, where the sample 
size is fixed by 100, V is a p×3 orthogonal matrix (including 
three PCs sorted by eigen-value), Ip is an identity matrix. 

We consider two cases: one with the numbers of variables 
less than the sample size: 50 (n>p). The other is the numbers 
of variables greater than the sample size: 300 (p>n). In 
addition, we discuss two different covariance structures 
to compare the performance in dealing the orthogonality 
constraint: (I) non-overlap structure (Figure 1A): the first 

min , ,U D V F j j
j

k

X UDV V− ′ +
=
∑2

1
1
λ

subject to and′ = ′ =UU I V V Ik k

https://www.unc.edu/~haipeng
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10 variables are assigned to first component with a uniform 
loading coefficient value, 0.32, the 11th-20th variables are 
assigned with a uniform loading coefficient value, 0.32, to 
second component, the 21th-30th variables are assigned to 
third component with a uniform loading coefficient value, 
0.32. The remaining variables are given a zero value for the 
loading coefficients (i.e. three vectors of loading are non-
overlap); (II) overlap structure (Figure 1B): the first 15 variables 
are assigned to first component [loading coefficient value = 
(0.256,…,0.256)], the 6th-25th variables are assigned to second 
component [loading coefficient value = (0.132, –0.061, –0.061, 
–0.061, 0.061, 0.022, …, 0.022, 0.310,…)], the 16th-35th 
variables are assigned to third component (loading coefficient 
value = (–0.2842, –0.0711, –0.0711, –0.0711, 0.0995, …, 0.0995, 
0.292, …), the other variables are given a zero value for the 
loading coefficients (i.e. three vectors of loading are overlap). 

Therefore, there are four simulated cases: (I) non-overlap 
covariance structure with p=50; (II) non-overlap covariance 
structure with p=300; (III) overlap covariance structure with p=50; 
(IV) non-overlap covariance structure with p=300, respectively.

The simulations are replicated by 300 times for each case 
and the first three PCs are evaluated. 

Metric for comparison

A consistency metric, cosine value of the angle between the 
true and the estimated vector of sparse loading coefficients, 
is used as the performance indicator. The cosine value in 
each replication is defined as the inner product of true and 

estimated loading coefficients. Like the correlation coefficient 
(but in a range of 0 and 1), if the estimated loading coefficients 
are very close to the true loading coefficients, then the cosine 
value will be approximate to 1 (the angle of true and estimated 
loading coefficients is close to 0). In contrast, if the estimated 
loading coefficients are quite different from the true loading 
coefficients, then the cosine value will approach to 0 (the 
angle of true and estimated loading coefficients is close to 90). 
The cosine values of 300 replications in each algorithm are 
presented by boxplot (Figure 2). 

Results 

Results of the four simulation studies are presented in 
Figure 2A-D. Clearly, all sparse PCAs perform well with 
high consistency (>90%) compared to the classic PCA 
with a consistency rate <80% in most cases (Figure 2A-D). 
This indicates the sparse PCAs could predict well the true 
loading coefficient values. In comparison of non-overlap 
versus overlap structure, sparse PCAs perform better in the 
case with non-overlap structure (Figure 2A-B versus 2C-D). 
In addition, higher consistency rate is observed in PC1 than 
in PC2 or PC3 for the sparse PCAs (Figure 2A-D). Also, 
sparse PCAs perform better when the number of genes is 
smaller (Figure 2A versus 2B or 2C versus 2D).

Data example

To illustrate the potential application of sparse PCA, a gene 

Figure 1 Covariance structures of the simulation study for the 50 genes with true signal. X-axis and Y-axis represent the location of 50 
genes. The diagonal elements of matrix are variance of each gene, and the others, non-diagonal elements, are the covariance of corresponded 
gene in row and column. (A) Non-overlap covariance structure: each block means the relevant genes in each component and no genes can 
reflect one more components in this case; (B) Overlap covariance structure: the second block (20 by 20) is overlap with first (15 by 15) and 
third blocks (20 by 20), so some genes can be present in more than one component.
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expression dataset in lung cancer (n=442 patients) is used for 
demonstration (42). In this dataset, there are 255 patients 
survived more than 5 years (censored at 5 years) and 187 
patients died before 5 years. Demographic information 
includes gender (female: 219, male: 223), smoking status 
(never smoking: 49, past smoking: 268, and current 
smoking: 32), and TNM staging (IA: 114, IB: 162, II: 
95; III: 68). Here we used one published gene signature, 
malignancy risk (MR) gene signature (102 genes) (7), to 
evaluate if any sparse PCA could perform better than the 
classic PCA in terms of reduction of gene numbers and 
improvement of difference of survival curves. The analysis 
procedures is first to reduce the data into PC1, then to 
divide the 442 patients into two risk groups (high and low 
malignancy-risk groups) according to a zero split of the 
PC1, and lastly to use Kaplan Meier method to estimate 
survival curve for each group and log rank-test to test 
significant difference of two survival curves.

Analysis results are presented in Table 2 for the comparison 
of PCA with sparse PCAs, including VM, REM, SVD, and 
PM approaches. Each approach is able to show a statistically 
significant difference between the two survival curves 
(P<0.001). Ideally, we would like to the sparse PCAs yields a 
smaller subset of genes with a larger chi-square statistics of 
log rank test (i.e., smaller P value). While the results show a 

comparable chi-square statistics (21.2-22.8; P<0.001), some 
of sparse PCA approaches (e.g., REM and PM) select fewer 
genes to more efficiently contribute to the risk classification. 

To illustrate how the sparse PCAs shrink the loading 
coefficients to zero, we compare the loading coefficients 
between each sparse PCA and the classic PCA in Figure 3. 

Table 2 Summary of clustering for 442 lung cancer patients by 
PCA and sparse PCAs

Methods Low risk 

group

High risk 

group

Selected 

genes

Log rank test 

(P value)

PCA 221 221 102 22.8 (<0.001)

VM 221 221 87 21.2 (<0.001)

REM 221 221 85 22.8 (<0.001)

SVDb 221 221 98 22.8 (<0.001)

SVDc 221 221 102 22.8 (<0.001)

PM 221 221 83 22.8 (<0.001)

The malignancy-risk groups are divided by PCA, VM, REM, 

SVDb, SVDc, and PM, respectively. The log rank test is to 

test the difference of survival times between high and low 

malignancy-risk groups. We report the chi-square statistics 

of log-rank test and its P value of each approach. PCA, 

principal component analysis; VM, variance maximization; 

REM, reconstruction error minimization; SVDb, singular 

value decomposition by Bayesian information criterion; 

SVDc, singular value decomposition by cross validation; PM, 

probabilistic model.

Figure 3 The shrinkage of coefficients in sparse PCAs. Each panel 
is a comparison of loading coefficients between one sparse PCA and 
standard PCA (displayed by black color points); (A) VM (orange-color 
points) shrinks 15 genes; (B) REM (red-color points) shrinks 17 genes; (C) 
SVDb (blue color points) shrinks 4 genes; (D) PM (purple points) shrinks 
19 genes. (There is no display for SVDc because of no shrinkage). 
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Results indicate if the loading coefficients in the classic PCA 
are close to zero, they are likely to be shrunken to zero by 
spare PCA.

Conclusions

Sparse PCA is a modern advanced PCA by maintaining the 
powerful data reduction functionality and incorporating 
the sparseness model for variable selection. While its 
application in cancer research is still in infancy stage 
compared to PCA, we see the great potential especially in 
the some cancer types (e.g., pancreatic cancer) which gene 
expression levels are quite homogeneous, and thus make 
very challenging to develop genomic profiles.
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