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Introduction

Rho GTPases, which are important members of the 
Ras superfamily, participate in a variety of cellular 
biochemical processes, such as proliferation, migration, 
and transformation, in different types of cells, including 
endothelial cells, immune cells, and tumor cells (1-4). Cell 
division cycle protein 42 (Cdc42) is a classic member of 
the Rho GTPase family, which includes RhoA and Rac1. 
As a member of the Rho family, Cdc42 was first reported 
to regulate the actin cytoskeleton as a key gene product in 
Saccharomyces cerevisiae (5,6). Then, Cdc42 was demonstrated 
to establish and maintain cell polarity in yeast (7).  
Subsequently, Cdc42 was implicated in the regulation 
of signaling pathways required for a variety of biological 
activities, including cell cycle progression, the maintenance 
of cell polarity and morphology, intracellular trafficking and 
transformation (5,8-11).

Cdc42 is a molecular switch that cycles between an active 
GTP-bound form and an inactive GDP-bound form (12).  

The switching of Cdc42 between these two states is 
controlled by three main regulatory proteins: GTPase-
activating proteins (GAPs), guanine-nucleotide exchange 
factors (GEFs), and guanine-nucleotide dissociation 
inhibitors (GDIs). GEFs act as positive regulators to 
activate Cdc42 by causing the conversion of GDP to GTP, 
while GAPs act as negative regulators by accelerating the 
activation of GTPase, which is responsible for converting 
GTP to GDP and decreasing the activity of Cdc42 (13). 
GDIs bind to the inactive GDP-bound state of the protein 
and sequester the release of Cdc42 away from the cellular 
membrane to inhibit GTPase (14). In its GTP-bound 
state, Cdc42 induces conformational changes and activates 
a large number of effectors that initiate signaling cascades 
that control diverse cellular functions, such as proliferation, 
migration and transportation (15). However, aberrant 
activation of Cdc42GTPase has been linked to oncogenic 
phenotypes in some of human cancers, which suggests that 
targeting these proteins may be useful for the treatment of 
tumors.
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With advances in gene-specific knockout techniques, 
recent results obtained from studies of conditional 
gene deletion of Cdc42 in specific tissues revealed that 
Cdc42 plays a significant role in the development of 
multiple organs, including the liver, lungs and kidneys  
(16-18). These results provide useful genetic information 
concerning the physiological roles of Cdc42 in states that 
mimic human diseases, such as acute respiratory distress 
syndrome (ARDS), polycystic kidney disease, and deficient 
B cell maturation, among others (19-21). Considering its 
varied cellular functions, many studies have concentrated 
on Cdc42 activity in cancer progression. Cdc42 has been 
shown to regulate diverse cell behaviors in several types of 
cancer (22,23). In addition, increasing knowledge about 
Cdc42 has revealed its important roles in cancer diagnosis, 
treatment and prognosis.

In this review, we focus on the role of Cdc42 in lung 
cancer and discuss potential therapeutic strategies that 
target the Cdc42 signaling pathway.

Cdc42 signaling and lung cancer

The Cdc42 gene has not been reported to be mutated or 
deleted in lung cancer (24), which suggests that Cdc42 is 
not a tumor suppressor. This differs from the role of RhoA 
in gastric cancer. However, Cdc42 and its effectors or 
regulators have been implicated in lung cancer. Increasing 
numbers of investigations have focused on the mechanisms 
by which Cdc42 could be activated. These mechanisms 
include altered expression of Cdc42 GTPases, increased 
GEF activity and decreased GAP activity.

Cdc42 GTPases in lung cancer

The overexpression of Cdc42 has been detected in several 
types of human cancer (25,26). It has been reported 
that Cdc42 is highly expressed in lung adenocarcinoma 
patients and that overexpression of Cdc42 is significantly 
associated with lymph node metastasis and TNM stage 
(27,28). Compared with that in human bronchial epithelial 
cells, the expression of Cdc42 in lung cancer cell lines, 
such as A549 cells, is much stronger. In another study, it 
was found that Cdc42 represents a candidate ‘lung tumor 
progression’ gene because altered expression of Cdc42 
may affect tumor progression in mice (29). These results 
suggest that the altered expression of Cdc42 is associated 
with lung tumorigenesis and may serve as a prognostic 
marker.

Cdc42 regulators in lung cancer

Some regulatory proteins, including GEFs and GAPs, lead 
to the activation of Cdc42 GTPase and promote cancer 
progression. For example, Vav1, which acts as a GEF for 
Cdc42, has been detected in primary human lung cancer 
samples, including adenocarcinoma and squamous cell 
carcinoma (30). It has also been shown that the risk of 
metastasis in lung cancer is associated with altered expression 
of Cdc42 and that of its upstream factor Vav1 (31).  
Ect2 is another regulator that can mediate guanine-
nucleotide exchange on small GTP-binding proteins such 
as Cdc42. It has been reported that a high level of Ect2 
expression leads to a poor prognosis of patients with non-
small-cell lung cancer (NSCLC) (32,33).

As negative regulators of Cdc42, GAPs also mediate tumor 
progression in lung cancer. For instance, deleted in liver 
cancer-1 (DLC-1) is a multidomain protein that includes an 
internal RhoGTP domain through which DLC-1 functions as 
a GAP (34). In one study, it was demonstrated that DLC-1  
exhibited strong GAP activity, with limited activity for 
Cdc42 in lung cancer cells (35). Another study showed 
that ARHGAP44 catalyzes GTP hydrolysis on Cdc42, 
which is responsible for the stimulation of cell spreading 
and migration by mutant p53 (36). Although RhoGDIs 
have been reported to correlate with some tumors such as 
colorectal and ovarian cancers (37,38), the involvement of a 
GDI in the regulation of Cdc42 in lung cancer has not yet 
been reported.

These results demonstrate that upstream regulators of 
Cdc42, such as GAPs and GEFs, play significant roles in 
controlling Cdc42 activity during lung cancer progression 
and are potential candidates for targeted therapy. However, 
more research on the expression of Cdc42 regulators during 
different stages of lung carcinogenesis is required.

Cdc42 effectors and signaling in lung cancer

Cdc42 GTPases regulate diverse cellular functions via 
downstream effectors (39). Well-known effector proteins 
of active Cdc42 include the proteins in the p21-associated 
kinase (PAK) family. Paks are a family of serine/threonine 
protein kinases that can be divided into group I (PAK1-3)  
and group II (PAK4-6) (40,41). Several members of the 
Paks family act as signal transducers in lung cancer. For 
example, Pak4 mediates the activation of LIMK1 for the 
regulation of migration and invasion in NSCLC (42). Pak4 
is also correlated with NF-kB and β-catenin signaling in 
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A549 lung cancer cells (43). Mutations in another member 
of the Pak family, Pak5, have been reported to be associated 
with lung cancer (44). Another study showed that Cdc42 
regulates the establishment of polarity in human bronchial 
epithelial cells via PAR6 (45), but this pathway has yet 
to be identified in lung cancer. Other effectors interact 
with Cdc42 to affect lung tumorigenesis. For instance, 
activated Cdc42-associated kinase 1 (ACK1), a common  
non-receptor tyrosine kinase, has been reported to be 
implicated in NSCLC and associated with the survival of 
NSCLC patients (46). ACK1 also regulates the growth, 
migration, and metastasis of NSCLC cells both in vitro and 
in vivo. Cdc42-interacting protein 4 (CIP4) is an adaptor 
protein that regulates EGFR trafficking in a variety of 
cancer cell models. It has been found that CIP4 promotes 
lung adenocarcinoma metastasis and is related to poor 
prognosis (47). These results indicate that Cdc42 effectors 
and signaling factors could be positive regulators and 
prognostic biomarkers of lung cancer.

Regulation of Cdc42 in lung carcinogenesis

Cdc42 participates in many cellular behaviors, such as 
motility and polarity, which can facilitate tumorigenesis 
and progression. The following sections demonstrate the 
function of Cdc42 in lung carcinogenesis and discuss the 
underlying mechanism by which Cdc42 is activated.

Cdc42 drives cancer cell metastasis

Metastasis is a multistep process in which tumor cells 
migrate out of their primary cancer site, invade the 
surrounding tissue and blood vessels, enter the blood or 
lymphatic system and induce tumor colonies in other 
organs (48,49). The invasive cells form invadopodia, which 
are actin-rich membrane protrusions that are associated 
with the degradation of the extracellular matrix (ECM) by 
matrix metalloproteinases (MMPs) (50,51). Invasive cells 
also contain filopodia, which are involved in the movement 
of cancer cells. The abundance of filopodia was thought 
to be correlated with the invasiveness phenotype (52,53). 
Cdc42 has been implicated in the suppression of both lung 
cancer invadopodium formation and ECM degradation via 
the N-WASP pathway (54). As the downstream effector 
of PI3K signaling, Cdc42 is activated, which promotes 
filopodium formation and cell migration during NSCLC  
progression (55). In addition, the LKB1-Cdc42-PAK 
pathway has been reported to impair the cell polarity 

required for cancer cell invasion into the surrounding 
environment (56). The evidence showed that maintenance 
of cell polarity may be one way in which Cdc42 affects 
cellular morphology and contributes to cancer progression. 
These studies suggest that Cdc42 plays a critical role in 
the cellular events that are responsible for lung cancer 
metastasis.

Cdc42 stimulates EMT

Cancer metastasis relies on cell migration and the ability 
of cancer cells to invade basement membranes and blood 
vessels (48). Cell migration involves a process termed 
epithelial-to-mesenchymal transition (EMT), in which 
tumor cells adopt a mesenchymal morphology to move 
through the ECM via the digestion of tumor cell-to-
cell contacts (57-59). During EMT, epithelial cell surface 
proteins that regulate cellular adhesion, such as E-cadherin, 
are replaced by the mesenchymal proteins N-cadherin and 
vimentin.

Cdc42 has been implicated in mediating EMT, as 
indicated by the hallmarks of decreased E-cadherin levels 
and upregulated vimentin levels in lung cancer cells (60). 
The release of p120-catenin from adherens junctions (AJs) 
to the cytoplasm, which leads to E-cadherin degradation, 
has been associated with the activation of Cdc42 in human 
lung cancer (61). However, some results indicated that 
Cdc42 modulates smoke-induced airway cell migration 
through a p120-catenin-independent pathway during the 
early stages of lung carcinogenesis (62). Additional evidence 
suggests that E-cadherin can negatively mediate cell 
migration in NSCLC by reducing the level of active form 
of Cdc42 (63). Other reports have shown that during EMT, 
Cdc42 plays a key role as a downstream effector of the 
FAK/AKT pathway, through which Cdc42 is activated by 
the interaction between integrin αvβ3 on the cell and ECM 
ligands; this interaction in turn initiates the formation of 
filopodia in lung tumor cells (64). These studies suggest a 
critical role for Cdc42 in inducing EMT in lung cancer.

Cdc42 induces oncogenic transformation

Some studies have reported that Cdc42 is involved in Ras-
mediated cellular transformation and tumorigenesis (65). 
For example, in the Cre-inducible conditioned knockout 
mouse model, Cdc42 deficiency in alveolar cells resulted in 
the inhibition of Kras-induced transformation and tumor 
formation, but Cdc42 loss in bronchial cells increased 
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bronchiole tumor formation (66). These results suggest 
that Cdc42 functions in a cell-specific manner in lung 
tumorigenesis.

In addition to Ras-related transformation, Cdc42 also 
affects oncogenic EGFR signaling. The activation of Cdc42 
results in the inhibition of ubiquitin-mediated EGFR 
degradation, which leads to sustained EGFR signaling and 
cellular transformation (67). A contribution of Cdc42 to 
EGFR-mediated transformation has not yet been reported 
in lung cancer. Thus, future experiments will address this 
possibility and determine whether Cdc42-EGFR initiates 
lung cancer formation.

Targets of Cdc42

Since Cdc42 GTPase has proven to be difficult to target 
directly, significant efforts have been made to develop 
inhibitors based on the mechanisms of Cdc42 regulation 
and function and that target various aspects of Cdc42 
signaling. In this section, we will discuss the potential 
strategies and inhibitors.

Curcumin inhibi t s  lung cancer  migrat ion and 
downregulates  Cdc42 (27) .  A natural  compound, 
cycloartobiloxanthone,  affects  the migration and 
invasiveness of lung cancer cells (68). In addition, TAOCSB 
has been shown to inhibit the migration of A549 cells by 
suppressing Cdc42 (31). These results indicate that Cdc42 
is a target of natural products with anticancer effects.

Other studies have identified small molecule inhibitors 
of Cdc42 activity that affect GEF function. For example, 
ML141 is a noncompetitive, nucleotide-binding inhibitor of 
Cdc42 that inhibits nucleotide re-association (69). Another 
small molecule inhibitor, CASIN, inhibits Cdc42 activation 
by preventing its binding to GEFs in a dose-dependent 
manner (70). However, these small molecule inhibitors 
have not yet shown clinical efficacy for lung cancer. In 
addition, emerging evidence has shown that microRNAs 
play important roles in lung carcinogenesis by affecting the 
expression or activation of Cdc42. The ectopic expression 
of miR-137 in lung cancer cells could downregulate Cdc42, 
which would lead to a decrease in cell proliferation (71).  
MiR-182 has been reported to suppress lung cancer 
metastasis (72). In addition, miR-25 has been implicated 
in patients with NSCLC and is associated with Cdc42 
production in A549 cells (73). A recent result showed that 
long noncoding RNA 00707 is upregulated in LAD tissues 
compared with normal tissues and that its overexpression 
is related to an advanced TNM stage, as this miRNA 

regulates Cdc42 (74). These results indicate the importance 
of microRNAs as downstream effectors that target the 
Cdc42 gene.

Conclusions

Emerging evidence indicates that Cdc42 signaling plays an 
important role in the progression of lung cancer. However, 
additional studies are needed to determine the activity and 
expression patterns of Cdc42 and its signaling effectors 
during the stages of lung tumor initiation, progression 
and metastasis. The effectors and upstream regulators 
of Cdc42 have been implicated in the pathogenesis of 
lung tumorigenesis. Current efforts to block Cdc42 
activity based on the regulatory mechanisms associated 
with Cdc42 signaling are in progress. However, there 
has been limited success in Cdc42 GTPase inhibitor 
development for lung cancer treatment. The small 
inhibitor ML141 was used to inhibit Cdc42 activity 
by binding to GEFs. In our previous study, we used an 
ML141 inhibitor during inflammatory lung injury and 
demonstrated that the inactivation of Cdc42 decreased 
endothelial cell proliferation and regeneration (21).  
Therefore, further studies are required to observe the effect 
of Cdc42 inhibitors on lung carcinogenesis. Recent results 
showed that microRNAs that target Cdc42 are associated 
with lung cancer. However, the regulatory mechanisms in 
these pathologic processes require further study. Overall, 
these data support a significant role for Cdc42 in lung 
tumorigenesis and reveal the protein as a novel candidate 
for therapeutic interventions, which warrants further 
investigation of Cdc42 signaling in lung cancer.
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