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Introduction

Cancer is composed of uncontrolled growing cells with the 
potential to disrupt the function of distant organs which 
is the leading cause of death in the developed world (1).  
Its incidence is still increasing because more people 

live to an old age, which is a significant risk factor for 
cancer (2). Much progress has been achieved and several 
subtypes of cancer show very a good response to current 
chemotherapy or immunotherapy. However, the majority 
of cancer patients suffer extensive therapy but still show 
very poor prognosis. A significant percentage of cancers 
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such as pancreatic adenocarcinoma shows extremely poor 
five-year survival that is only about 6% (3). Pancreatic 
adenocarcinoma is resistant to most of current therapies 
and only a few effective chemotherapeutic options exist. 
Identification of novel and effective targets or pathways is 
important to cure cancer, especially for highly malignant 
cancers such as pancreatic adenocarcinoma. 

For working efficiency, eukaryotic cells have developed a 
well-controlled compartmental system to spatially organize 
cellular “workforce” based on functional specialization (4).  
Membrane-bound organelles are important to achieve 
such a goal (5). For examples, membrane-bound nuclei are 
specifically dedicated for DNA and RNA synthesis, while 
membrane-bounded endoplasmic reticulum and Golgi 
apparatus are specialized for protein sorting and trafficking. 
The generation of ATP for energetic needs occurs in 
membrane-bounded mitochondria. Although membrane-
bound organelles are good for high-performance biological 
processes, these fixed structures have limitations especially 
when dynamic compartments are needed. In reality, lots 
of biological processes such as signaling transduction, 
RNA metabolism, DNA transcription, protein translation 
as well as chromatin structure are very dynamic and thus 
membrane-less organelles are more suitable in these cases. It 
is now generally accepted that membrane-less organelles are 
formed through liquid-liquid phase separation (LLPS) (6-9).  
Experimental evidence has indicated that nucleoli, 
nuclear speckles, paraspeckles, promyelocytic leukaemia 
(PML) and Cajal bodies within the nuclear envelope, and 
P-bodies, germ granules and stress granules in cytoplasm 
are formed through LLPS (10-13). A critical role of LLPS 
in physiological processes has been recognized, but the 
molecular mechanism remains elusive. Furthermore, its role 
in pathologic processes is largely unknown. It is unclear 
whether LLPS is involved in carcinogenesis and whether 
abnormal LLPS is a therapeutic target for patients with 
cancer. 

1,6-hexanediol is an aliphatic alcohol that can disrupt 
weak hydrophobic protein-protein or protein-RNA 
interactions and thus disrupt LLPS (14,15). However, the 
biological effect of 1,6-hexanediol on cancer cells and its 
molecular mechanism are unknown. Interestingly, we found 
that pancreatic cancer cells are sensitive to 1,6-hexanediol, 
an inhibitor of LLPS. In a subcutaneous xenograft model, 
1,6-Hexanediol inhibits pancreatic cancer growth. RNA-
sequencing and reverse transcription polymerase chain 
reaction (RT-PCR) reveal that 1,6-hexanediol could 
downregulate MYC transcript levels. Together, we provide 

proof-of-concept to show that abnormal liquid phase 
separation might be a novel target for pancreatic cancer as 
well as other cancers. 

Methods

Cell culture-related experiments

An immortal human pancreatic duct epithelial cell line 
(HPDE6-C7) and four pancreatic ductal adenocarcinoma 
(PDAC) cell lines, including BxPC-3, PANC-1, AsPC-
1 and CFPAC-1, were purchased from Shanghai Yu Bo 
Biotech Co., Ltd. All cell lines were maintained in a 5% 
CO2-humidified incubator at 37 ℃. All cells were cultured 
in DMEM media supplemented with 10% fetal bovine 
serum, L-glutamine, penicillin, and streptomycin. For 
CCK8 assay, five cell lines were seeded in 96-well plates 
(1,000/well) and treated with five different concentrations 
(0, 10, 20, 30, 40 mg/mL) of 1,6-hexanediol (ALDRICH) 
for 48 h. Then 20 μL of CCK8 solution was added into 
each well and the results were examined after 2 hours. In 
morphologic assay, cells were seeded into 24-well plates and 
treated by indicated doses of 1,6-Hexanediol for 48 hours. 
After that, cells were imaged by an optical microscope. All 
experiments were performed in triplicate. 

Atopic BxPC-3 xenograft mouse model in nude mice 

Male nude mice (6–8 weeks of age) housed in the SPF 
facility of Nantong University were given subcutaneous 
injection of the same number (1×106/100 μL PBS) of 
BxPC-3 cells. Mice were randomly divided into a control 
group (n=4) and a 1,6-hexanediol treatment group (n=4). 
Animals were treated with water or 1,6-hexanediol  
(500 mg/kg) by intraperitoneal (i.p.) injection every day for 
4 weeks. All animals displayed no obvious health problems 
during the experimental period. At the end of experiments, 
all mice were killed. Tumors were resected, weighed, 
and photographed. All animal studies were approved by 
Nantong University Animal Care and Use Committee, and 
handled in strict accordance to institutional protocols.

Quantitative RT-PCR

Total RNA of each sample was extracted using TRIzol 
reagents (Ambion) as described in the manufacture’s 
protocol. The quantity of total RNA was determined by 
Nanodrop 2000. First-strand cDNA library generated 
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from 1 ug of total RNA was performed using Revert Aid 
First Strand cDNA Synthesis Kit (Thermo Scientific). All 
the mRNA levels were quantified by gene-specific primers 
using SYBR Green PCR Kit (QIAGEN) on BIO-RAD 
CFX96 Real-Time System. All reactions were performed 
in triplicate. The relative expression levels of mRNAs 
were normalized to GAPDH and calculated by using the 
comparative threshold cycle method.

RNA-sequencing and analysis

For RNA-sequencing experiments, total RNA was extracted 
as mentioned above. Ten microliters of total RNA were sent 
to Genewiz Company for RNA-sequencing. Significantly 
altered genes with raw reads more than 1,000 in at least 
one sample were listed. These genes were also analyzed 

by KEGG (Kyoto Encyclopedia of Genes and Genomes) 
database. In all cases, the P values of less than 0.05 were 
considered statistically significant.

Results

Pancreatic cancer cells are sensitive to 1,6-hexanediol

More and more experimental evidence indicates a critical 
role of protein-mediated LLPS in physiological processes. 
But the precise role of protein-mediated LLPS in cancer 
is unknown. We hypothesized that cancer cells might 
be more sensitive to disruption of LLPS due to many 
abnormal biological processes in cancer cells. To test our 
hypothesis, we treated one immortal HPDE6-C7 and four 
PDAC cell lines, including BxPC-3, PANC-1, AsPC-1 and 

Figure 1 1,6-hexanediol treatment inhibits pancreatic cancer cell proliferation and induces cell death. (A) HPDE6-C7, BxPC-3, PANC-1,  
AsPC-1 and CFPAC-1 cells were treated with 1,6-hexanediol by indicated doses. After 48 hours, the number of cells in each well was 
examined by CCK8 assay; (B) HPDE6-C7, BxPC-3, PANC-1, AsPC-1 and CFPAC-1 cells were seeded in 12-well plates and treated with 
1,6-hexanediol by indicated doses. After 48 hours, the morphology of cells was photographed by using the optical microscope. *, P<0.05; **, 
P<0.01; ***, P<0.001.
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CFPAC-1, with 1,6-hexanediol (Figure 1A). To our surprise, 
in a low dose of 1,6-hexanediol (10 mg/mL)，almost all 
control HPDE6-C7 cells survive. However, about 50% of 
PDAC cells (BxPC-3, PANC-1, AsPC-1 and CFPAC-1) 
are dead (Figure 1A). With increasing concentrations 
of 1,6-hexanediol, HPDE6-C7 cells also begin to die  
(Figure 1A ) .  But in general ,  compared to control 
HPDE6-C7 cells, PDAC cells, including BxPC-3, PANC-1, 
AsPC-1 and CFPAC-1, are more sensitive to 1,6-hexanediol 
(Figure 1A). To further confirm this result, we monitored 
the morphologic change of PDAC cells before and after 
1,6-hexanediol treatment (Figure 1B). In our tested 
doses of 1,6-hexanediol, HPDE6-C7 cells show minimal 
morphologic changes before and after 1,6-hexanediol 
treatment (Figure 1B). In contrast, all four PDAC cells 
(BxPC-3, PANC-1, AsPC-1 and CFPAC-1) showed a 
greater morphologic change even in the lowest dose of 
1,6-hexanediol (Figure 1B). Taken together, our results 
clearly demonstrate that PDAC cells are very sensitive to 
1,6-hexanediol, an inhibitor for protein-mediated LLPS. 

1,6-hexanediol inhibits pancreatic cancer growth in vivo

Next, we determined whether 1,6-hexanediol could also 
inhibit pancreatic cancer growth in vivo. Both C57BL/6 and 
nude mice are well tolerable to 1,6-hexanediol treatment 
in the dose of 1 g/kg (data not shown). Thus, we select 
the dose of 500 mg/kg for in vivo experiments. As shown 
in Figure 2A, 1,6-hexanediol treatment could potently 
inhibit BxPC-3 pancreatic cancer growth. Statistical 
analysis further demonstrates that 1,6-hexanediol treatment 

could significantly limit pancreatic cancer growth in vivo  
(Figure 2B). Together, we provide convincing evidence to 
show the inhibitory effect of 1,6-hexanediol on pancreatic 
cancer both in vitro and in vivo. 

1,6-hexanediol downregulates MYC expression

The potent inhibitory effect of 1,6-hexanediol on pancreatic 
cancer growth encourages us to further understand its 
molecular mechanism. To globally understand the effect 
of 1,6-hexanediol on gene transcription, we treated the 
BxPC-3 cells with 1,6-hexanediol and did RNA-sequencing. 
Initially, we identified 1,230 genes that are significantly 
affected by 1,6-hexanediol (data not shown). Among 
these genes, 189 genes not only have high abundance 
(raw reads >1,000) at least in one sample (BxPC-3 cells 
or 1,6-hexanediol-treated BxPC-3 cells) but are also 
significantly affected by 1,6-hexanediol (Figure 3A).  
There are 127 significantly downregulated genes and  
62 up-regulated genes. Further KEGG pathway analysis 
of 127 downregulated genes revealed 15 significantly 
enriched pathways (Figure 3). The most enriched pathways 
include cytokine-cytokine receptor interaction, WNT 
signaling pathway, ECM-receptor interaction, MAPK 
signaling pathway and focal adhesion (Figure 3C). Although 
there are 62 up-regulated genes, no significant enriched 
pathway could be identified by KEGG pathway analysis. 
Interestingly, the most important oncogene MYC is 
significantly downregulated by 1,6-hexanediol treatment 
(Figure 3A). To further confirm this finding, we did 
real-time RT-PCR to examine the expression of MYC 
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Figure 2 1,6-hexanediol inhibits pancreatic cancer growth in an atopic xenograft mouse model. (A) Photos of BxPC-3-derived tumors 
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before and after 1,6-hexanediol treatment. Consistently,  
1,6-hexanediol treatment significantly downregulate MYC 
but not IL-6 and KLF5 expression (Figure 3B). Our results 
demonstrate that the LLPS inhibitor, 1,6-hexanediol, could 
specifically affect several pathways. Most importantly, 
1,6-hexanediol could significantly downregulate MYC 
expression. 

Discussion

Based on currently available treatment methods, the 
majority of cancer patients cannot be cured. Identification 
of  nove l  targets  i s  important  for  deve loping an 
efficient therapeutic regimen for cancer patients. The 
abnormal protein-mediated LLPS has been linked 
to neurodegenerative diseases such as Alzheimer’s  
disease (16,17). It was recently shown that the Alzheimer’s 
disease-associated proteins such as tau and FUS, have the 
ability to form LLPS, and abnormal LLPS of these proteins 
might be the cause of neurodegenerative diseases (18,19). 
However, the pathological role of LLPS in other diseases 
remains enigmatic. Here, we provide proof-of-concept that 
cancer cells might have abnormal protein-mediated LLPS 
and cancers cells are more sensitive to disruption of LLPS. 
However, the proteins that are involved in abnormal LLPS 
in cancer cells are still undetermined in the current study. 

1,6-hexanediol is an aliphatic alcohol that can disrupt 
LLPS and thus affect the function of membrane-less 
organelles (14,15). But how does it affect gene transcription 
globally is  unknown. We did RNA-sequencing to 
examine the change of gene expression before and after 
1,6-hexanediol treatment. The most affected genes that are 
enriched in pathways include cytokine-cytokine receptor 
interaction, WNT signaling pathway, ECM-receptor 
interaction, MAPK signaling pathway and focal adhesion 
(Figure 3B). Several cytokines, such as IL-1B, CSF3, 
CXCL1, IL-8 and IL-1A, are significantly downregulated 
by 1,6-hexanediol. These significantly downregulated 
cytokines are recently shown to play roles in pancreatic 
cancer development. IL-1A and IL-1B signaling through 
IL-1R promotes tumor fibrosis and chemoresistance 
in pancreatic cancer (20,21). Pancreatic cancer cells 
produce high amounts of G-CSF to recruit neutrophil-
like cells for maintaining high immunosuppressive  
microenvironment (22). Interactions between IL-8 or 
CXCL1 with their receptors, CXCR1 and CXCR2, sustain 
pancreatic cancer progression (23,24). All these important 

cytokines are significantly downregulated by 1,6-hexanediol. 
Thus, we believed that 1,6-hexanediol might significantly 
affect tumor microenvironment. The underlying molecular 
mechanism about how 1,6-hexanediol attenuates the 
expression of these cytokines has not been solved in this study. 

One of the most important downregulated genes 
upon 1,6-hexanediol treatment is MYC. MYC is a 
transcription factor that contributes to multiple cancer  
development (25,26). It becomes an extensively studied 
therapeutic target in cancer (27). But inhibition of the 
function of MYC is really a challenging task and there 
are still no widely accepted methods. It is interesting that 
1,6-hexanediol could significantly downregulate MYC 
expression. Although KRAS, CDKN2A, TP53, and 
SMAD4 are four main genetic lesions that contribute to 
the failure of therapies, deciphering vulnerabilities of these 
genetic lesions remains challenging (28). MYC is considered 
as a non-redundant signaling hubs under several important 
signaling pathways and essential for maintaining PDAC (29). 
The significant downregulation of MYC might contribute 
to the inhibitory function of 1,6-hexanediol to pancreatic 
cancer. In the majority of cancer, MYC is over-expressed 
and, in some cases, due to activation of super-enhancers. 
Recently, protein-mediated LLPS separation has been 
hypothesized to play an important role in the organization 
and function of super-enhancers. Thus, 1,6-hexanediol 
might disrupt the function of super-enhancers via inhibition 
of LLPS, but it still needs experimental data to verify 
this hypothesis. It seems that bromodomain-containing 
protein-4 (BRD4) inhibitors or super-enhancer inhibitors 
can downregulate MYC expression. However, the detailed 
molecular mechanism regarding how 1,6-hexanediol 
reduces MYC expression is still undetermined. One 
potential mechanism is that 1,6-hexanediol disrupts LLPS 
and subsequently disrupts the function of MYC-super 
enhancers. However, the relationship between LLPS and 
super-enhancers is still largely unknown. 

In summary, we provide proof-of-concept that besides 
neurodegenerative diseases, abnormal LLPS might be 
involved in pancreatic cancer. Pancreatic cancer cells might 
be more addictive to LLPS to support their malignancy. 
Disruption of LLPS might be a valuable way to treat 
pancreatic cancer. But global inhibition of LLPS, such 
as by 1,6-hexanediol, also has toxicity to normal cells. 
Identification of the proteins involved in abnormal LLPS 
in pancreatic cancer will allow us to develop more specific 
methods to treat pancreatic cancer. 
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