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Posi tron emiss ion tomography (PET)/computed 
tomography (CT), magnetic resonance (MR) imaging, 
and the hybrid PET/MR scanner of recent introduction 
have seen rapid expansion in both research and clinical 
application (1-3). At present, they are increasingly used 
in clinical practice, especially in the oncologic setting for 
tumour detection and diagnosis, for histological subtype 
correlation and stratification of disease, for staging, for 
predicting and monitoring treatment response during 
chemotherapy and at the end of treatments, for prognosis 
on disease-free and overall survival, and for follow-up 
of tumours, in different organs and compartments (2-7). 
These modern techniques have the advantage of providing 
semi-quantitative and quantitative data, in addition to 
morphological assessment obtained by CT or conventional 
MR imaging, which are obtained through the measurement 
of a lot of parameters, including the apparent diffusion 
coefficient (ADC) for diffusion-weighted (DW)/MR and the 
standardized uptake value (SUV) for PET/CT or PET/MR 
(8-10). The ADC obtained by using a mono-compartmental 
model is the most common quantitative method used in 
DW-MR imaging (2,11). It is inversely correlated to the 
tissue cellularity and the presence of barriers that reduce or 
impede the movement of the water molecules within the 
intracellular and extracellular compartments (2,3,11). Thus, 
malignant tumours usually present low ADC values because 
of the decrease in the extracellular and intracellular space 
due to the high cellularity and the high nucleus-cytoplasm 
ratio which have a limiting effect on water molecule 
diffusion (3,12). Furthermore, a significant increase in ADC 
values during treatment or at the end of chemotherapy 

demonstrates a positive response to treatments (2,13). In 
nuclear medicine, the SUV is the ratio of tissue radioactivity 
concentration at a specific time and administered dose at the 
time of injection divided by body weight. Beyond the body 
weight, the administered dose may also be corrected by the 
lean body mass (SUL), or body surface area. In addition, in 
fluoro-deoxy-glucose (FDG) studies, SUV can be corrected 
for plasma glucose level, because glucose transporters may 
be saturated by glucose (14). Generally, SUV is calculated 
on the highest image pixel in the tumour regions (SUVmax) 
because of its lower inter-observer variability compared 
to averaged SUV (SUVmean). In addition, other volume-
based parameters such as metabolic tumour volume (MTV) 
and total lesion glycolysis (TLG) are also used since it has 
been proved that they may provide better prognostic indices 
than traditional SUV metrics (15). Nevertheless, SUV is yet 
used as the predominant metric for tumour quantification 
with 18F-FDG PET. Glycolysis is increased in metabolically 
active tumours and in inflamed tissues. Hence, an increase 
in SUV values is expected in malignant tumours and 
decrease in SUV values reflects favourable response to 
treatments (1).

In studies that use quantitative or semi-quantitative 
imaging techniques with the aim to find accurate value 
thresholds to characterize tumours, the assessment of 
repeatability of measurements is fundamental for validating 
their use in clinical practice (2,3). Unfortunately, SUV and 
ADC are associated with multiple sources of variability 
that include type of scanner, parameters of acquisition, 
and method of measurement. Furthermore, the lack 
of standardization of the technical parameters and the 
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acquisition protocols between different studies makes it 
impossible to compare results or even utilize proposed 
thresholds in everyday clinical practice (2,3). In DW-
MR imaging, multiple factors affect quantitative ADC 
values, leading to unreliable measurements, such as field 
strength, repetition-time, echo-time, b-values selection, 
post-processing system and data analysis (2,3,16,17). As an 
example, the inclusion of low b values, which control the 
sensitivity to diffusion-based contrast in DW-MR, in mono-
exponential ADC maps of DW-MR imaging, causes an 
ADC overestimation because of the inclusion of perfusion 
effects of tissues that are completely attenuated at b values 
greater than 100 sec/mm2 (2). In the characterization of 
the anterior mediastinum, the use of perfusion-free ADC 
measurements (obtained by using b values of 150,500, and 
800 sec/mm2 for reconstructing ADC maps) significantly 
improved diagnostic accuracy of DW-MR imaging when 
compared to perfusion-sensitive measurements (obtained by 
including also the b value of 0 sec/mm2 for reconstructing 
ADC maps) with perfusion effects which were greater for 
malignancies than benign conditions (18). In addition, the 
manual method of region-of-interest (ROI) positioning for 
measuring ADC may affect the ADC value and can lead to 
unreliable measurements (2). For instance, in breast cancer, 
Giannotti and colleagues recently observed that inter-
reader variability is reduced by using larger ROIs to cover 
the entire lesion, as compared to a single small ROI (19). 
Beyond size, for the assessment of tumours of the anterior 
mediastinum, we demonstrated that repeatability of ADC 
measurements is also related to number of ROIs. Indeed, 
the whole tumour volume method of ADC measurement 
was found the most repeatable, suggesting that inclusion 
of the entire tumour volume leads to a decrease in inter-
observer variation because this method, unlike other 
methods, does not require the reader to select the slice 
or the area with the lowest signal on the ADC map (20). 
Similar results were found for other tumours including 
pleural abnormalities, rectal cancer, endometrial cancer, and 
musculoskeletal lesions (4,17,21).

Thus, to best use SUV and ADC in clinical practice, 
an understanding of the repeatability of the technique is 
required. Test-retest studies involve repeated scanning 
of the same patient on the same scanner using the same 
protocol no more than a few days apart and provide basic 
information on the repeatability of the technique (22). The 
study of Fraum and colleagues faces this important issue for 
PET/CT and PET/MR imaging hybrid techniques (23).  
In particular, the authors investigated the test-retest 

repeatability of quantitative metrics obtained by using 
PET/MR imaging, including SUVmax, SULpeak, and 
ADCmedian, in patients with solid malignancies of the 
pelvis (23). Past studies demonstrated that metrics of 
PET/CT were highly repeatable, whereas measurement 
repeatability of PET/MR imaging metrics have been less 
investigated (22). The advantage of PET/MR imaging 
compared to PET/CT lies in its higher accuracy in local 
and systemic staging due to its superior contrast resolution 
compared to CT for morphological assessment (8,9,23). In 
their study, Fraum and colleagues prospectively enrolled 
14 patients with newly diagnosed pelvic tumours (mostly 
cervical squamous cell carcinoma accounting for 79% of 
the whole cohort, with remaining cases of endometrial 
adenocarcinoma), except for one patient who had a pelvic 
recurrence of rectal adenocarcinoma (23). All these patients, 
who did not receive any oncologic treatment within 30 days  
prior to enrolment, underwent two imaging sessions of 
PET/CT and PET/MR separated each other from 1 to 
7 days. On PET/CT imaging and on ADC map of DW 
imaging for PET/MR, the margin of the tumour was 
manually drawn in order to generate the whole tumour 
contour for obtaining several PET metrics and ADC 
values. For PET/MR, the ADC repeatability analysis was 
performed in 12 out of 14 patients enrolled. By comparing 
PET metrics obtained with PET/CT and PET/MR 
imaging, PET/MR presented lower metrics compared to 
PET/CT, which were significantly lower for 7 out of 12 
metrics in the primary analysis and for 12 out of 72 metrics 
in the exploratory analysis, except for the metabolic tumour 
volume. The test-retest repeatability analysis demonstrated 
high repeatability of ADC measurements performed in the 
two defined sessions with identical values of ADCmedian 
(within-subject coefficient of variation, 2.4%; mean percent 
differences, 1.6%) and similar values of ADCmean, ADC20, 
and ADCtrough. For PET/CT, although the within-subject 
coefficient of variation was found in a narrow range (from 
−9.8% to 6.0%) for all PET metrics, the same coefficient 
was lower for ADC metrics compared to PET ones. Lastly, 
the mean percent differences in measurements between 
sessions were generally lower on PET/MR compared to 
PET/CT though without statistical significance.

The major strength of the present study lies in the 
investigation of DW imaging repeatability on simultaneous 
PET/MR, a topic that was not previously analyzed 
because two previous studies on PET/MR evaluated only 
repeatability of PET metrics (24,25). Overall, beyond 
PET metrics, the study of Fraum and colleagues showed 
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that ADC metrics are also quantitatively robust for their 
inclusion in clinical trials (23).

However, authors are aware of the limits of their 
results which mainly lie in the small study cohort that 
have precluded to obtain statistical significance differences 
between defined groups. In addition to other limitations 
listed by authors, a potential major limitation of this study 
lies in the lack of information about acquisition of data for 
extracting quantitative values of DW imaging for PET/
MR. As an example, the authors declared that “ADC maps 
were generated by the VA40 console software” and in the 
supplemental table 1 a three-point b-value acquisition 
is reported with values of 50, 500, and 1,000 sec/mm2. 
However, if ADC maps were reconstructed by including 
the low b value of 50 sec/mm2, perfusion sensitive values 
were obtained with ADC overestimation due to perfusion 
effects within the tumour (2,3,18). Furthermore, it is likely 
that, in the study of Fraum and colleagues, quantitative 
measurements were manually extracted from the lesion 
of interest from the same reader for all cases, whereas 
measurements should be performed at least by two readers 
in order to assess inter-reader variability of quantitative or 
semi-quantitative data.

In conclusion, the study of Fraum and colleagues add 
valuable and useful information in the field of hybrid 
quantitative imaging about repeatability of PET metrics 
and DW metrics, underlying the robustness of such metrics 
for their utilization in clinical trials with quantitative end-
point and for their incorporation into treatment response 
assessment algorithms.
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