Evidence behind use of orthovolt intraoperative radiotherapy and other techniques of IORT in recurrent colorectal cancer treatment

Magdalena Skórzewska, Wojciech P. Polkowski

Department of Surgical Oncology of the Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland

Correspondence to: Professor Wojciech P. Polkowski, MD, PhD. Department of Surgical Oncology, Medical University of Lublin, Staszica 11, 20-081 Lublin, Poland. Email: wojciech.polkowski@umlub.pl.

Abstract: There are only scarce literature data on the use of orthovolt intraoperative radiotherapy (IORT) in treatment of colorectal cancer recurrence. Previous experience with IORT using low-energy photons highlights the need for better strategies of combined therapy in referral centres where multidisciplinary treatment options are widely available. There is an absolute need for large randomized studies that will clearly assess the value of different treatment options in colorectal cancer (CRC) recurrences, and thus create uniform rules to be observed in this disease.

Keywords: Colorectal cancer (CRC); recurrence; orthovolt intraoperative radiotherapy (orthovolt IORT); surgery; survival

Submitted Apr 25, 2014. Accepted for publication Jul 25, 2014.
doi: 10.3978/j.issn.2218-676X.2014.08.07
View this article at: http://dx.doi.org/10.3978/j.issn.2218-676X.2014.08.07

Introduction

There are only scarce literature data on the treatment of colorectal cancer (CRC) recurrence with the use of orthovolt intraoperative radiotherapy (IORT). IORT is a type of radiation treatment delivers a concentrated beam of radiation to tumor or tumour bed, as they are located during surgery. Depending on the type of radiation source following types of IORT are distinguished: intraoperative electron radiotherapy (IOERT) (delivering electron beams of high energies), high-dose rate intraoperative brachytherapy (HDR-IORT) (using high-dose rate source and remote afterloading technique) and orthovolt IORT (with low voltage X-ray beams). IORT, used as a component of combined therapy, allows to increase survival rates by about 15% (1). IORT is a safe and effective method of irradiation, significantly decreasing the risk of “geographical error”. IORT allows the administration of a single, high dose of radiation, applied during surgery under direct vision (2,3). The principle for the use of IORT is to eliminate the microscopic tumour foci by maximizing the radiobiological effects of a single dose of radiation and to optimize the treatment duration (4,5). At the time when the application of a sufficiently high dose of external beam radiation therapy (EBRT) is limited by tolerance of organs at risk (OAR), IORT is an excellent alternative allowing for safe dose escalation to cover the tumour while dose-limiting structures, such as the bowel, bladder or ureters, are safely shielded (1,6,7). Moreover during surgery, it is possible to release adhesions, moving normal tissues beyond the irradiation field, thereby protecting them while giving an appropriate dose to the precisely defined surgical bed area with a safe margin (8,9). IORT enables extra “sterilization” of surgical margins, otherwise the only chance to perform radical treatment is to extend the resection which is not always possible (2,3,10-12). According to Williams et al., IORT allows to limit the extent of the mutilating surgery, such as sacrectomy or exenteration (13). Most studies report a significant increase in survival rates in patients with recurrent CRC treated with IORT (5,14,15). The theoretical assumptions are promising, but the literature data on IORT in recurrent CRC come only from retrospective, single-institution studies.

IORT in recurrent colorectal cancer

Location of recurrent CRC in the pelvis is associated with a high risk of infiltration of the surrounding bony structures,
which drastically reduces the chances of radical resection and usually involves the extended resections of multiple organs (16,17). The infiltration of side walls is associated with worse outcomes and obtaining radical resection is then significantly reduced (18,19). Surgical resection of recurrent CRC is frequently associated with a high risk of residual tumour tissue in the tumour bed and may have a negative impact on overall survival (OS) (20-22). The literature data also confirm better local control, with a lower risk of relapse at higher doses of radiation in the context of combination therapy with IORT (8,11). Improved local control and survival rates have been reported when IORT was used after neoadjuvant chemoradiotherapy for locally recurrent disease in radiation-naïve patients (23). Meta-analysis by Mirnezami et al. concerned the application of IORT in the treatment of recurrent CRC. The authors analyzed 29 studies, both prospective and retrospective, covering a total of 3,003 patients, of which 1,211 had recurrent CRC. IORT was used in patients with narrow or involved margins. The use of IORT was found to be associated with a significantly higher rate of wound healing complications without affecting the overall rate of complications and improved 5-year OS rates (P=0.001) (24). To date there are only two studies describing the use of orthovolt IORT in recurrent CRC, both published in 2012, by Guo et al. and Daly et al. (Table 1) (10,34). However, each of these publications describes the use of different systems for orthovolt IORT. In the study by Guo et al., the INTRABEAM® PRS 500 system was used whereas Day et al. used Phillips RT -250. Daly et al. analyzed a total of 61 cases, including 41 patients with recurrent colon (n=16) and rectal (n=25) cancer. All patients were treated with IORT. The 2-year survival rate was 52%. The median survival time was 22 months in all patients without distinguishing between primary CRC and recurrence (34). The study team from Cleveland analyzed a group of 42 patients, of whom 32 (76%) had recurrence of CRC. The median survival time in this subgroup was 32 months and the 3-year survival rate was 43% (10). Distribution of R0 and R1 resection rates was 52% and 45%, respectively. R2 resection was performed only in 2.4% of cases (10). Hashiguchi et al. analyzed 51 patients with recurrent rectal and sigmoid cancer, 27 patients were treated with IOERT at a dose of 15-30 Gy. The authors found significant effects of IOERT (P=0.0007) and a small volume of tumour tissue left on higher survival rates (P=0.0022). In this analysis, the use of EBRT had no effect

<table>
<thead>
<tr>
<th>Author (Reference)</th>
<th>Year</th>
<th>IORT Technique</th>
<th>N</th>
<th>Overall survival (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hashiguchi (15)</td>
<td>1999</td>
<td>IOERT</td>
<td>27</td>
<td>1-year 2-year 3-year 5-year 10-year</td>
</tr>
<tr>
<td>Nag (19)</td>
<td>1999</td>
<td>IOERT</td>
<td>28</td>
<td>12</td>
</tr>
<tr>
<td>Lindel (25)</td>
<td>2001</td>
<td>IOERT</td>
<td>49</td>
<td>27</td>
</tr>
<tr>
<td>Mannnaerts (26)</td>
<td>2001</td>
<td>IOERT</td>
<td>33</td>
<td>60</td>
</tr>
<tr>
<td>Wiig (27)</td>
<td>2002</td>
<td>IOERT</td>
<td>59</td>
<td>30</td>
</tr>
<tr>
<td>Pezner (28)</td>
<td>2002</td>
<td>IOERT</td>
<td>15</td>
<td>29</td>
</tr>
<tr>
<td>Hahnloser (9)</td>
<td>2003</td>
<td>IOERT</td>
<td>131</td>
<td>21</td>
</tr>
<tr>
<td>Haddock (29)</td>
<td>2011</td>
<td>IOERT</td>
<td>583</td>
<td>30 16</td>
</tr>
<tr>
<td>Roeder (6)</td>
<td>2012</td>
<td>IOERT</td>
<td>97</td>
<td>30</td>
</tr>
<tr>
<td>Suzuki (14)</td>
<td>1995</td>
<td>IOERT/HDR-IORT</td>
<td>42</td>
<td>42 19</td>
</tr>
<tr>
<td>Rutten (30)</td>
<td>2000</td>
<td>IOERT/HDR-IORT</td>
<td>62</td>
<td>49 33</td>
</tr>
<tr>
<td>Vermaas (31)</td>
<td>2008</td>
<td>IOERT/HDR-IORT</td>
<td>11</td>
<td>77 51</td>
</tr>
<tr>
<td>Alektiar (7)</td>
<td>2000</td>
<td>HDR-IORT</td>
<td>74</td>
<td>75 23</td>
</tr>
<tr>
<td>Nuyttens (32)</td>
<td>2004</td>
<td>HDR-IORT</td>
<td>19</td>
<td>34</td>
</tr>
<tr>
<td>Turley (33)</td>
<td>2013</td>
<td>HDR-IORT</td>
<td>21</td>
<td>60</td>
</tr>
<tr>
<td>Guo (10)</td>
<td>2012</td>
<td>IOXRT</td>
<td>32</td>
<td>43</td>
</tr>
<tr>
<td>Daly (34)</td>
<td>2012</td>
<td>IOXRT</td>
<td>55</td>
<td>59</td>
</tr>
</tbody>
</table>

IOERT, intraoperative electron radiotherapy; HDR-IORT, high-dose-rate intraoperative brachytherapy; IOXRT, orthovolt radiotherapy.
Skórzewska and Polkowski. IORT in recurrent CRC
differentiated the prescribed radiation dose ranges,
amounted to 13.6 Gy; however, in the R2
(15-30 Gy) and
analyzed 147 patients with non-metastatic
history of prior external field irradiation and radicality of
et al
10 to 15 Gy (25). The median dose of IORT in the analysis
20 Gy, patients after radical resection received doses from
15 to 20 Gy (25). The median dose of IORT in the analysis
by Eble
13.6 Gy; however, in the R2 resection group the dose was higher –16 Gy (4). Haddock
determined the dose rate depending on two criteria:
resection group the dose was higher –16 Gy (4). Haddock et al.
determined the dose rate depending on two criteria:
history of prior external field irradiation and radicality of
resection. The patients previously irradiated received a dose
of 12.5 Gy and those non-irradiated –17.5 Gy. Depending on
the type of resection, the prescribed doses were as follows R0
–12.5 Gy, R1 –15 Gy and R2 –20 Gy. In this analysis, 98% of
patients received a dose of not less than 20 Gy and the range
of doses prescribed was 7.5-30 Gy (29). A similar IORT
dose range was used by Hashiguchi et al. (15-30 Gy) and
the median dose was 23 Gy (15). The dose of IORT is very
important, because it allows in a measurable way to increase
the total dose used in the treatment in order to eradicate
the tumour. Doses exceeding 50 Gy allow to provide better
control of symptoms; however, in cases of R1 resection
the radiation doses should exceed 60 Gy to achieve a
satisfactory treatment outcome (29,30). In some patients
due to insufficient volume of a single field, it is essential to
use the multiple radiation field technique (15). It is not the
standard practice, but allows to cover a larger area, and in
the case of IOERT it does not extend a total time of the
entire treatment. The duration of IOERT irradiation is
short (3-5 minutes) but preparations for the procedure with
treatment usually take 30-45 minutes (19). In HDR-IORT ,
the operative time is extended by about 90 minutes due to the
time of preparation and treatment (33). The multiple field
technique in orthovolt IORT could significantly prolong the
duration of surgery. IORT time prolongs with the increasing
size of the applicator. The need to combine the radiation fields
is often associated with the extensive areas of invasion, which
means connecting the largest applicators, and thus the longest
irradiation times. In Cleveland analysis, the median duration
of IORT was 35 min (range, 14-39 min) (10). The size of
applicators was selected based on the volume of recurrent
tumour, so the surface of the applicator would adhere as closely
as possible to the walls of the surgical bed. The median size
of the applicator in Guo et al. analysis was 5 cm (10). Precise
adherence between the tumour lodge and the applicator
surface is extremely important. If the applicator is not fitted
closely, the dose delivered to the lodge surface may vary
markedly, resulting in the areas with insufficient dose coverage.

Table 1

| Table 1 |

IORT treatment times and doses

In the study by Guo et al. the radiation dose administered was
5 Gy, at a distance of 1 cm from the applicator surface.
The range of doses was 13.4-23.1 Gy with median
14.4 Gy (10). A dose in IOERT is given to the depth of
0.5-1 cm and reported on the surface (35). However, there
is no uniformity in terms of the dose delivery reporting
process. Generally, a dose is calculated to the surface or at
a certain distance chosen by the study team (32). Lindel
et al. differentiated the prescribed radiation dose ranges,
depending on the radicality of resection. In the group of
non-radical resection, the doses given ranged from 15 to
20 Gy, patients after radical resection received doses from
10 to 15 Gy (25). The median dose of IORT in the analysis
by Eble et al. amounted to 13.6 Gy; however, in the R2
resection group the dose was higher –16 Gy (4). Haddock
et al. determined the dose rate depending on two criteria:

Re-irradiation for recurrent colorectal cancer

Dresden et al. analyzed 147 patients with non-metastatic
relapse of rectal cancer. Their study confirmed an
important role of combined therapy with the use of
IORT in the treatment of local recurrence. The median
OS time was 28 months. The 5-year OS rate was 31.5%.
Patients re-irradiated or those who received a full course of
radiotherapy before resection of recurrence had increased
Table 1 evaluated the toxicity profile of second line therapy (30). Vermaas et al. analyzed a small group of 11 patients with recurrent rectal cancer in whom re-irradiation with EBRT to a dose 30 Gy and resection with IORT were performed. IORT was performed using the IOERT or HDR- IORT technique. All patients were qualified as Tr4/5 according to the Wanebo classification and no cases of R0 resection were reported. Despite poor prognosis, the results achieved with this treatment schedule were similar to those obtained in other studies (Table 1).

Radiation toxicity after IORT

Radiation-induced toxicity is extremely difficult to distinguish from surgical complications or symptoms of disease progression (38). Depending on the IORT technique, and thus the energy applied, the effects, both early and late, on the surrounding tissues are different. The main issue of research on the use of IORT using electrons is a high rate of complications (19). The incidence of postoperative complications varies from 15% to 68% (39). The most common types of early complications after treatment with IOERT are wound healing disturbances 3-46%, small bowel obstructions (14%) and formation of pelvic abscesses (12%), while in the group of patients who underwent surgical resection alone—pelvic abscesses (15%) (9,14,15,24,27,40). The percentage of serious postoperative complications ranges from 27% to 81% (15,19,41,42). Turley et al. reported 45% of postoperative complications...
without postoperative mortality (33). Wiig et al. and Hashiguchi et al. found no difference in the incidence of complications depending on the application of IORT (15, 27). In the analysis by Williams et al., the most common acute complications associated with resection and IOERT were urinary tract infections, urinary incontinence and bladder dysfunction –13% (13). Dutch analysis by Dresen et al. reported 24% of acute complications of the urinary tract (3). Roeder et al. in the analysis of 97 patients with recurrent CRC, reported 59% rate of complications, including wound healing disorders, formation of abscesses, fistulas and disorders of micturition (6). An increased risk of complications in wound healing occurs in patients after preoperative radio and/or chemotherapy (4). In the analysis of the use of orthovolt IORT by Guo et al., the most frequent type of complications was hydrenephrosis that occurred in 10 (24%) patients (10). Hydrenephrosis and stricture of ureters in the case of high energy IOERT occur in about 2-12% of cases, however, it is difficult to compare these data with different types of IORT. Analysis by Daly et al. revealed 17 (31%) cases above the third degree of toxicity, including two cases of postoperative deaths. The most frequently reported complications were pelvic abscesses, small bowel obstruction, fistulas formation, ureteral stricture, and anastomotic leakage (34). The basic issue in the analysis of both Guo et al. and Daly et al. is that the incidence of complications was assessed in all patients, both in cases of recurrences and primary, advanced CRC. The toxicity profile in these groups of patients can vary greatly, mainly because patients with recurrent tumours have already undergone resection and radiation. Acute complications can also be caused by immobilization of bowel loops due to adhesions after primary treatment (14). The use of combined therapy (preoperative chemoradiotherapy, resection with IORT) in the analysis of researchers from the Mayo Clinic resulted in significantly higher rates of complications in patients with the grade of tumour immobilization above F2, according to the Suzuki-Gunderson classification (9). The most common complications were pelvic abscesses, intestinal obstruction and fistulas (9). Analysis of studies reporting complications after HDR-IORT in CRC recurrences shows that the types and rates of complications are similar to those reported for IOERT. Alektiar et al. reported that in patients with recurrent CRC undergoing surgery with HDR-IORT (followed by EBRT or otherwise) the rate of peripheral neuropathy was 16% and was similar to the data from other studies (7, 32, 37). Turley et al. found that surgical resection and HDR-IORT was associated with a high rate of both early (45%) and late (38%) complications. The most common early complications were postoperative wound infections (28%) and formation of intra-abdominal abscesses (14%). The prevalence of late complications such as neuropathy is reported to be 2% to 22% and is directly proportional to a dose of radiation (3, 6, 13, 24, 29, 30). In the analysis by Nuyttens et al. abnormal wound healing occurred in 46% of patients, intra-abdominal abscesses in 16% and intestinal anastomotic leakage in 5% (32). To avoid the most common complications, it is necessary to perform the IORT procedure in sterile conditions and to shield the surrounding, healthy tissues, especially the ureters and the pelvic nerves. In cases at risk of ureter exposure to radiation, implantation of ureteral catheters or stents should be considered. The incidence of ureteral stricture requiring implantation of the catheter to prevent the development of hydrenephrosis is as high as 23% (7, 37). Despite the relatively high complication rates in patients undergoing resection with IORT, this treatment method is not less safe than surgery. In addition, IORT implementation can benefit in increased local control. Postoperative mortality depends, inter alia, on the scope of combination therapy, and the selection of patients for a particular treatment. Daly et al. reported two (3.6%), postoperative deaths unrelated to the use of IORT, whereas Guo et al. reported no deaths (10, 34). Hahnloser et al. from the Mayo Clinic reported only one (0.3%) case of postoperative death (9). In the literature the 3-month postoperative mortality rate ranges from 0% to 8% (3, 6, 24, 27, 30, 33). IORT is a technique that does not seem to increase the rates of complications or mortality (27). In the study by Guo et al., the median duration of postoperative hospital stay was 7 days (range, 2-59 days) (10). Some authors provide information about the duration of the entire hospital stay (8-19 days), which does not allow to make a meaningful comparison of results (3, 9, 27, 31, 33). The time of hospitalization in one of the studies, evaluating the use of IOERT in recurrences of rectal cancer, was shorter (13 days) in the group IOERT (–) one (16 days) (27).

Conclusions

Analyzing the results of research on orthovolt IORT in recurrent CRC in the context of available literature, a number of limitations should be noted. Reports describing the use of orthovolt IORT in CRC recurrence do not constitute sufficient evidence, nor do they allow us to draw
uniform conclusions, as these are single-centre studies. In both studies, a relatively small number of cases limit the possibility of statistical comparisons of certain parameters. The conclusions from these studies should be formulated with caution in relation to the known limitations of retrospective analyses in general, and in particular the possibility of selection bias. Unsatisfactory outcomes in patients treated with IORT arise mostly from inability to obtain a free resection margin (38). Particular emphasis should be placed on early detection of recurrence. Previous experience with IORT using low-energy photons highlights the need for better strategies of combined therapy and multidisciplinary care of patients with recurrent CRC. At the same time, the treatment of recurrence should be performed in referral centres where multidisciplinary treatment options are widely available. There is an absolute need for large randomized studies that will clearly assess the value of different treatment options in CRC recurrences, and thus create uniform rules to be observed in this disease. Based on the literature data available, following algorithms seems to be optimal to take full advantage of oncological treatment in patients with recurrent CRC (Figure 1).

Acknowledgements

Disclosure: The authors declare no conflict of interest.

References

Cite this article as: Skórzewska M, Polkowski WP. Evidence behind use of orthovoltage intraoperative radiotherapy and other techniques of IORT in recurrent colorectal cancer treatment. Transl Cancer Res 2014;3(6):530-536. doi: 10.3978/j.issn.2218-676X.2014.08.07