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Introduction

Lung cancer results in high mortality worldwide, while 
non-small cell lung cancer (NSCLC) accounts for more 
than 85% of newly diagnosed lung cancer cases (1,2). 
Chemotherapy is the most important method for patients 
with advanced lung cancer, and cisplatin, oxaliplatin and 
carboplatin are the most commonly used chemotherapy 
drugs in clinical practice. Cytotoxicity of these drugs 
is mainly caused by the formation of platinum-DNA 

complexes that induce DNA damage and cell apoptosis (3). 
The rate of cisplatin chemotherapy is only 30–40%, and 
the resistance of tumor cells to chemotherapy drugs is the 
main factor that affects the efficacy of chemotherapy (4,5). 
Therefore, exploration of the molecular mechanism of 
cisplatin resistance in NSCLC cells is of great significance 
in improving the survival rate and prognosis of lung cancer 
patients.

Long non-coding RNAs (lncRNAs) play an important 
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role in the development of various cancers, and they have 
become a new hot spot in tumor research due to their 
significant tumor tissue specificity and potential applications 
in tumor diagnosis and prognosis prediction (6,7). 
LncRNAs are RNAs with a length of over 200 bp, with 
either no or a small opening reading frame, that cannot 
or rarely encodes a protein. They are usually composed of 
multiple spliced exons, are transcribed by RNA polymerase 
II, and contain a histone modification similar to that of 
encoded proteins (8,9). In recent years, an increasing 
number of lncRNAs have been found to be closely related 
with chemotherapy drug resistance (10,11) and studies have 
found that lncRNAs can be used as targets of chemotherapy 
drug resistance (12,13).

LncRNA SNHG1 is found to be abnormally expressed 
in breast cancer (14), nasopharyngeal carcinoma (15), colon 
cancer (16) and a variety of other malignant tumor tissues, 
and plays a very important role in the regulation of tumor 
cell proliferation, migration and resistance to chemotherapy 
drugs (17,18). Previous research has found that upregulated 
lncRNA SNHG1 contributes to the progression of 
NSCLC, but the effect of SNHG1 on cisplatin sensitivity 
of NSCLC cells is unclear (19). In this study, we compared 
the expression of SNHG1 between cisplatin-sensitive and 
insensitive NSCLC tissues and explored the molecular 
mechanism used by SNHG1 to regulate the sensitivity 
of NSCLC cells to cisplatin by analyzing the expression 
of other molecules, such as glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH), U6 and miR-101-3p, in vitro. 
We found that SNHG1 is highly expressed in cisplatin-
insensitive NSCLC tissues, and that it can promote the 
expression of ROCK2 by inhibiting the expression of miR-
101-3p, thereby reducing the sensitivity of NSCLC cells to 
cisplatin in vitro.

Methods

Patients and tissues

Sixty-four NSCLC patients were diagnosed and treated 
through surgery at Nanjing Jinling Hospital, Nanjing 
University School of Medicine from September 2016 to 
September 2017. A total of 64 patients were operated on 
for NSCLC, and all patients were included in this study. 
Fresh tumor tissue from surgical resection was prepared as 
a single cell suspension, followed by a chemotherapeutic 
drug susceptibility test. Based on the drug susceptibility 
test results, the 64 NSCLC patients were divided into two 

groups: the cisplatin sensitive group (sensitive, n=32), and 
the cisplatin insensitive group (insensitive, n=32).

Additionally, neither of the NSCLC patients had 
other malignant tumors, chronic cardiovascular and 
cerebrovascular diseases, infectious diseases, and had not 
received radiotherapy, chemotherapy or immunotherapy 
before surgery. Informed consent was obtained from 
all patients, and the study was approved by the Ethics 
Committee of Nanjing Jinling Hospital ,  Nanjing 
University School of Medicine (ethical approval number: 
2016-037).

Cell and cell culture

A549 (CCL-185, ATCC, VA, USA), NCI-H520 (HTB-182, 
ATCC, VA, USA), A549/DDP (CL-0519, Procell, Wuhan, 
China) and NCI-H520/DDP (CL-0758, Procell, Wuhan, 
China) cells were cultured in DMEM medium (12491-15, 
Thermo Fisher, CA, USA), to which 10% fetal bovine 
serum (10100-147, Thermo Fisher, CA, USA) and 1% 
penicillin-streptomycin (15640055, Thermo Fisher, CA, 
USA) were added. In addition, 1 ug of DDP (H37021357, 
Qilu Pharmaceutical Co., Ltd., Shandong, China) was 
also added to the culture medium of the A549/DDP and 
NCI-H520/DDP cells.

Quantitative real-time polymerase chain reaction (RT-qPCR)

RT-qPCR was used to detect the expression of GAPDH 
mRNA, U6, miR-101-3p and lncRNA SNHG1 in tissues 
and cells. TRIzol was used to extract total RNA of the 
tissues or cells. For tissues, liquid nitrogen and TRIzol 
were simultaneously added to the mortar, and the tissues 
were ground into a powder. For the cells, TRIzol was added 
directly to the cells, after blowing several times back and 
forth. The extracted RNA was reverse transcribed into 
cDNA using the PrimeScript™ RT Master Mix reverse 
transcription kit (RR036B, Takara, Beijing, China). PCR 
parameters used were as follows: 37 ℃ for 60 minutes 
and 85 ℃ for 5 seconds. Twenty μL of the fluorescence 
RT-qPCR system mixture was prepared according to the 
SYBR Green qPCR Master Mix kit instructions (638320, 
TakaRa, Beijing, China) and amplified using an ABI 
7500 fluorescence quantitative PCR instrument (Applied 
Biosystems, MD, USA). The PCR parameters were set 
as follows: 40 cycles of 95 ℃ for 30 s (90 ℃ for 5 s, 65 ℃ 
for 30 s). The following PCR primers were used: U6-
F: 5'-AUAAAUCCCUUUACACCUCTT-3', U6-R: 
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5'-AAUAAAUCCCUUUACACCUCTT-3'; GAPDH-F: 
5'-GATGAACCTAAGCTGGGACCC--3', GAPDH-R: 
5'-TGTGAACGGATTTGGCCGTA-3'; miR-101-
3p-F: 5'-ACACTCCAGCTGGGTACAGUACUGUGA
UA-3', miR-101-3p-R: 5'-TGGTGTCGTGGAGTCG-3'; 
SNHG1-F:  5 ' -AGGCTGAAGTTACAGGTC-3' , 
SNHG1-R: 5'-TTGGCTCCCAGTGTCTTA-3'.

Cell transfection

The si-RNA for SNHG1 knockdown (si-SNHG1), control 
knockdown (si-NC), ROCK2 knockdown (si-ROCK2) and 
Hsa-miR-101-3p-mimic and Hsa-miR-31-5p-NC were 
designed and synthesized by Shenggong Bioengineering 
Co., Ltd. (Shanghai, China). si-RNA, si-NC, microRNA-
mimic and microRNA-NC were directly transferred into 
cells using Lipofectamine™ 2000 transfection reagent 
(11668019, Invitrogen, CA, USA).

Wild type or mutation mRNA 3'-UTR of SNHG1 and 
3'-UTR of ROCK2 were first connected to pisCHECK2 
(Promega, WI, USA) and then transfected into cells as si-
RNAs. LV-SNHG1/LV-ROCK2 is a plasmid that was used 
to upregulate the expression of SNHG1/ROCK2, and it 
was constructed as follows: the full-length sequence of the 
SNHG1/ROCK2 molecule was synthesized using PCR at 
Shenggong Bioengineering Co., Ltd. (Shanghai, China), 
and it was inserted into pcDNA3.1 (+) (Invitrogen, CA, 
USA) plasmid via the KpnI and EcoRI sites, and was then 
transfected into cells as a si-RNA. The control upregulator 
(LV-NC) was transfected only into the pcDNA3.1 (+) 
plasmid.

Cell counting kit-8 assay (CCK8)

CCK8 kit was used to measure cisplatin cytotoxicity. In 
brief, 5×103 cells/well were seeded into 96 wells, and 0, 1, 
2, 5, 10, 20 or 30 μM of cisplatin was added for 24 hours of 
culture. Then, all the wells were incubated with the CCK8 
reagent for 4 h, and the optical density at 450 nm (OD450) 
was used to show cell viability. Moreover, in order to 
measure the concentration of cisplatin that accounted for 
a half maximal inhibitory concentration (IC50), A549/DDP 
and NCI-H520/DDP cells required 40, 50, 60, 100 μM of 
cisplatin for the drug toxicity test.

Western blotting

The tissue or cell lysates were separated using SDS-PAGE 

and then transferred to PVDF membranes. The primary 
antibody selected was anti-ROCK2 (ab71598; 1:1,000) 
or anti-GAPDH (ab9484; 1:3,000), while the secondary 
antibody selected was goat anti-rabbit (ab150077; 1:1,000). 
The samples were incubated with the primary antibody 
overnight at 4 ℃ and with the secondary antibody for  
1 hour at room temperature.

Statistical analysis

Data are presented as mean ± standard deviation and 
all analyses were performed using SPSS 20.0 software. 
Student’s t-test or chi-square test were used to compare 
differences between two groups. Kaplan-Meier analysis was 
used to generate survival plots and the significance of the 
differences was assessed using the log-rank test. Pearson 
correlation was used to analyze the correlation between 
lncRNA SNHG1 and miR-101-3p in 64 NSCLC tumor 
tissues. A P value of <0.05 was considered to indicate 
statistical significance.

Results

SNHG1 is upregulated in cisplatin insensitive NSCLC 
tissues and cells

RT-qPCR was used to detect the expression of lncRNA 
SNHG1 in 32 samples of cisplatin sensitive NSCLC tissues 
and 32 samples of cisplatin insensitive NSCLC tissues. The 
results show that the expression of SNHG1 in cisplatin 
insensitive NSCLC tissues was significantly higher than 
that of cisplatin sensitive tissues (Figure 1A). Moreover, 
the expression of SNHG1 in DPP resistant NSCLC cells 
was found to be significantly higher than that in wild type 
NSCLC cells (Figure 1B). 

We analyzed the correlat ion between cisplat in 
sensitivity and clinicopathological features of NSLCL 
patients. As shown in Table 1, the expression of SNHG1 
was not associated with age, gender, tumor-node-
metastasis (TNM) stage, T stage or N stage. The 2-year 
survival of patients with cisplatin sensitivity was higher 
than that of cisplatin insensitive patients, but the difference 
was not significant (log rank=1.672, P=0.196) (Figure 1C). 
In addition, the 64 NSCLC patients were divided into two 
groups based on the ratio of the expression of lncRNA 
SNHG1 in cancer tissues: 30 patients were accordingly 
placed in the low expression of SNHG1 group (ratio < 
median value of the 64 NSCLC patients) and 34 patients 
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were placed in the high expression of SNHG1 group (ratio 
≥ median value of the 64 NSCLC patients). The 2-year 
survival of patients with low expression of SNHG1 was 
found to be significantly higher than that of patients with 
high expression of SNHG1 (log rank=5.440, P=0.0197) 
(Figure 1D).

SNHG1 regulates cisplatin sensitivity of NSCLC cells

We upregulated the expression of SNHG1 in A549 and 
NCI-H520 cells by transfecting LV-SNHG1 into the 
cells (Figure 2A), and downregulated the expression of 
SNHG1 in A549/DDP and NCI-H520/DDP cells by 
transfecting si-SNHG1 into the cells (Figure 2B). As 
shown in Figure 2C,D,E,F,G,H, CCK8 viability assay 
shows that SNHG1 upregulation in A549 and NCI-H520 
cells resulted in increased viability upon cisplatin treatment 
and lower IC50 values for cisplatin, while SNHG1 
downregulation resulted in decreased viability.

SNHG1 binds to miR-101-3p in NSCLC cells

We measured the expression of miR-101-3p in NSCLC 
tissues and NSCLC cells, and found that the expression of 
miR-101-3p in cisplatin sensitive NSCLC tissues and cells 
is significantly higher than that of cisplatin insensitive cells, 
while a negative correlation between SNHG1 and miR-
101-3p were found in NSCLC tissues (Figure 3A,B,C).

We searched for binding sites between miR-101-3p and 
SNHG1 using the starbase database (Figure 3D). Luciferase 
gene reporter system was used to confirm that miR-101-3p 
can regulate SNHG1 expression by binding to the SNHG1 
3'-UTR end. The results show that (Figure 3E) transfection 
with a miR-101-3p-mimic significantly decreased WT 
type 3'-UTR luciferase activity (P<0.001) in A549 cells. 
However, the same was not observed in the mutated type 
(MUT). Further, as shown in Figure 3F, lncRNA SNHG1 
downregulation could increase the expression of miR-101-
3p, and its upregulation could decrease the same. The above 
results suggest that miR-101-3p and lncRNA SNHG1 can 
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inhibit the expression of the other in NSCLC cells.

SNHG1/miR-101-3p/ROCK2 axis mediates cisplatin 
resistance in NSCLC cells

Previous research has shown that downregulation of miR-
101 contributes to epithelial-mesenchymal transition in 
cisplatin resistance of NSCLC cells by targeting ROCK2. 
ROCK2, the Rho-associated Frizzled protein kinase 2, 
is a key effector 236 downstream of the Rho family. In 
this study, we also measured the expression of ROCK2 
protein, and found that the expression of ROCK2 protein 
in cisplatin sensitive NSCLC tissues is significantly lower 
than that of cisplatin insensitive tissues (Figure 4A), with a 
negative correlation with miR-101-3p in NSCLC tissues 
(Figure 4B).

We also searched for binding sites between miR-101-
3p and ROCK2 using the starbase database (Figure 4C). 
Luciferase gene reporter system was used to confirm 
that miR-101-3p can regulate ROCK2 expression by 

binding to the ROCK2 3'-UTR end. The results show 
that (Figure 4D) transfection with the miR-101-3p-mimic 
significantly decreases WT type 3'-UTR luciferase activity 
in A549, but it did not work in MUT. However, neither 
ROCK2 downregulation or upregulation could change the 
expression of miR-101-3p in NSCLC cells (Figure 4E). 
These results suggest that ROCK2 is a target gene of miR-
101-3p. In addition, CCK8 viability assay showed that 
ROCK2 upregulation in A549 and NCI-H520 cells results 
in increased viability upon cisplatin treatment and lower 
IC50 values for cisplatin, while ROCK2 downregulation 
results in the decrease of the same (Figure 4F,G).

Discussion

Since the beginning of the 21st century, the incidence of 
cancer has been increasing in most countries. Therefore, 
research on the pathogenesis and treatment of tumors has 
become a primary focus of modern medicine. At present, 
along with the gradual introduction of new drugs and 
the development of medical technology, great progress 
has been made regarding tumor treatment. Cancer 
treatment drugs, including chemotherapy and targeted 
drug therapy, are currently the most widely used form of 
treatment. However, in clinical applications, tumor cells 
often develop resistance to drugs, resulting in treatment 
failure and disease recurrence, which greatly affects the 
cure rate of cancer patients (20). In recent years, along 
with the widespread application of second-generation 
sequencing technology, researchers have found that non-
protein-encoding gene sequences are closely related 
to the occurrence and development of cancer and drug 
tolerance (21,22). Among them, lncRNA is a hotspot 
in tumor resistance mechanism research. Many reports 
indicate that lncRNAs are involved in the development 
of drug-resistant phenotypes of tumors (23).

In this paper, we found that SNHG1 is upregulated in 
cisplatin insensitive NSCLC tissues and cells, and it can 
regulate cisplatin sensitivity of NSCLC cells in vitro. At 
present, many studies on lncRNAs in NSCLC cancer have 
been published, and many lncRNAs, such as DANCR (24), 
MEG3 (25) and HOTAIR (26), have been identified. 
lncRNA SNHG1 is located on chromosome 11 and has 
a full length of 780 bp. Previous studies have confirmed 
that SNHG1 acts as a proto-oncogene in a variety of 
malignancies (17). Yun Cui found that upregulated lncRNA 
SNHG1 contributes to the progression of NSCLC 
through the inhibition of miR-101-3p and activation of 

Table 1 Correlation cisplatin sensitivity and clinic pathological 
features in NSLCL patients (n)

Variables Case
Cisplatin

χ2 P
Sensitive Insensitive

Gender 0.277 0.599

Male 42 20 22

Female 22 12 10

Age, year 0.259 0.611

<60 38 18 20

≥60 26 14 12

TNM stage 3.373 0.185

I 25 16 9

II 18 8 10

III 21 8 13

T 2.250 0.134

T1–T2 32 19 13

T3–T4 32 13 19

N 3.216 0.073

N0 25 16 9

N1–N3 39 16 23

NSCLC, non-small cell lung cancer; TNM, tumor-node-metastasis.
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Figure 2 SNHG1 regulates the cisplatin sensitivity in A549/NCI-H520 cells. (A,B) The expression of SNHG1 was measured in different 
NSCLC cells after transecting into LV-NC, LV-SNHG1, si-NC and si-SNHG1; (C,D,E,F) NSCLC cells were exposed to various 
concentrations of cisplatin, and CCK8 kit was used to detect the cell viability; (G,H) IC50 values of NSCLC cells were determined from the 
viability versus cisplatin concentration curves. Compared with LV-NC, *, P<0.05, ***, P<0.001; compared with si-NC, #, P<0.05, ##, P<0.01, 
###, P<0.001. NSCLC, non-small cell lung cancer; CCK8, cell counting kit-8 assay; IC50, half maximal inhibitory concentration.

the Wnt/β-catenin signaling pathway (19). lncRNA can 
prevent tumor cells from apoptosis under the action of 
drugs by blocking the cell cycle, regulating the apoptosis 
transduction pathway, mediating protooncogene and 
tumor suppressor gene expressions, and producing tumor 
resistance. In combination with the study by Cui et al., 
lncRNA SNHG1 was found to be likely to affect cisplatin 
sensitivity of NSCLC cells by regulating the expression of 

miR-101-3p.
Fortunately, our study found that miR-101-3p is 

downregulated in cisplatin insensitive NSCLC tissues and 
cells, and is negatively correlated with SNHG1 expression 
in NSCLC tissues. At the same time, luciferase gene 
reporter system was used to confirm that SNHG1 is a 
target gene of miR-101-3p, which inhibits its expression 
in NSCLC cells. As is well known, lncRNAs and miRNAs 
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Figure 3 LncRNA SNGH1 and miR-101-3p mutually suppress in NSCLC cells. (A,B) RT-qPCR was used to detect the expression of miR-
101-3p in NSCLC tissues (n=32 per group) and cells; (C) Pearson correlation analysis showed a negative correlation between SNHG1 and 
miR-101-3p in NSCLC tissues; (D) WT-SNHG1 3'-UTR luciferase reporter vector, and a MUT-SNHG1 3'-UTR luciferase reporter 
vector with mutations on miR-101-3p binding sites of the SNHG1 3'-UTR was constructed; (E) miR-101-3p-NC/miR-101-3p-mimic were 
transected into A549, and luciferase activity was detected; (F) RT-qPCR was used to measure the expression of miR-101-3p in NSCLC cells 
after lncRNA SNHG1 knockdown or overexpression. Compared with LV-NC, ***, P<0.001; compared with si-NC, ###, P<0.001; compared 
with miR-101-3p-NC, $, P<0.05. NSCLC, non-small cell lung cancer; RT-qPCR, quantitative real-time polymerase chain reaction; MUT, 
mutated type.

are non-coding RNAs that exert their biological functions 
by regulating the RNA that encodes the protein (27,28). 
Luciferase gene reporter system was also used to confirm 
that ROCK2 is a target gene of miR-101-3p, and that miR-
101-3p can target the inhibition of ROCK2 expression in 
NSCLC cells. More importantly, ROCK2 can also regulate 
cisplatin sensitivity of NSCLC cells in vitro.

Recent studies have shown that ROCK2 is expressed 
in malignant tumors, such as breast cancer (29), colon  
cancer (30) and prostate cancer (31). Previous research 
has  shown that  ROCK2 is  mainly present  in the 
cytoplasm, regulating cytoskeletal component movement 
through its action on actin polymerization, myosin 
contraction, cell adhesion and microtubule dynamics, 
which change cell morphology, polarity and promote 
cell proliferation that participates in the invasion and 

metastasis of malignant tumors (32). ROCK2 has been 
rarely reported in lung cancer, but Vigil et al. found 
that ROCK1 and ROCK2 are required for NSCLC 
anchorage-independent growth and invasion (33).  
A recent study has indicated that miR-101 targets the 
inhibition of ROCK2 expression, whereas downregulation of 
miR-101 expression promotes the resistance of NSCLC cells 
to cisplatin by upregulating the expression of ROCK2 (34). 
Therefore, our results provide novel mechanistic insights 
into the role of SNHG1/miR-101-3p/ROCK2 signaling in 
cisplatin resistance of NSCLC cells.

Conclusions

lncRNA SNHG1 and ROCK2 protein are upregulated, 
while miR-101-3p is downregulated, in cisplatin insensitive 
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Figure 4 ROCK2 is a target gene of miR-101-3p. (A) The expression of ROCK2 protein was counted in NSCLC tissues (n=32 per group) 
which was detected by Western blot; (B) Pearson correlation analysis showed a negative correlation between ROCK2 protein and miR-101-
3p in NSCLC tissues; (C) WT-ROCK2 3'-UTR luciferase reporter vector, and a MUT-ROCK2 3'-UTR luciferase reporter vector with 
mutations on miR-101-3p binding sites of the ROCK2 3'-UTR was constructed; (D) miR-101-3p-NC/miR-101-3p-mimic were transected 
into A549, and luciferase activity was detected; (E) RT-qPCR was used to measure the expression of miR-101-3p in NSCLC cells after 
ROCK2 knockdown or overexpression; (F) western blot was used to detect the expression of ROCK2 protein in different NSCLC cells; 
(G) IC50 values of NSCLC cells were determined from the viability versus cisplatin concentration curves which was detected by CCK8 kit. 
Compared with LV-NC, ***, P<0.001; compared with si-NC, ###, P<0.001; compared with miR-101-3p-NC, $$$, P<0.01. NSCLC, non-small 
cell lung cancer; RT-qPCR, quantitative real-time polymerase chain reaction; MUT, mutated type; CCK8, cell counting kit-8 assay; IC50, 
half maximal inhibitory concentration; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.
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NSCLC tissues and cells. In vitro, SNHG1 and miR-
101-3p inhibit each other, but miR-101-3p targets the 
inhibition of ROCK2 expression. In summary, lncRNA 
SNHG1 upregulates ROCK2 in order to decrease cisplatin 
sensitivity of NSCLC cells by targeting miR-101-3p.
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