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Introduction

Lung cancer is one of the most common malignant tumors 
and the leading cause of cancer-related death (1). Non-
small cell lung cancer (NSCLC) accounts for 85% of all 
lung cancers (2). For patients with advanced NSCLC, 
comprehensive treatment is the main treatment plan. 
Platinum-containing chemotherapy is the first-choice 
treatment plan for advanced patients. The discovery of 
epidermal growth factor receptor (EGFR) mutation and 
first-generation application of EGFR-tyrosine kinase 
inhibitor (TKI) has provided a new method for the treatment 
of NSCLC (3,4).

First-generation EGFR-TKI mainly includes gefitinib 

and erlotinib. Its mechanism centers on preventing 
the activation of EGFR downstream signaling pathway 
through reversible competition for adenosine-triphosphate 
(ATP) binding sites, inducing the apoptosis of cancer cells. 
The IPASS study (5), NEJ002 study (6) and WJTOG3405  
study (7) confirmed that progression-free survival 
(PFS) was significantly prolonged in patients with 
EGFR mutation after gefitinib treatment. These studies 
established the role of EGFR-TKI in first-line therapy 
for advanced NSCLC patients with EGFR mutation. 
However, after using the first-generation EGFR-TKI, 
drug resistance is unavoidable.

The second-generation of EGFR-TKI includes 
afatinib, dacomitinib, and other treatments. Afatinib is 
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characterized by a high selectivity and low molecular 
weight. It is an irreversible ErbB family inhibitor. It can 
inhibit the proliferation and metastasis of cancer cells by 
binding ErbB and blocking signaling pathway (8). In the 
LUX-Lung 3 study (9), the median PFS in the afatinib 
group was significantly longer than in the pemetrexed/
cisplatin group (11.1 vs. 6.9 months). In the LUX-Lung 6 
study (10), the PFS of patients with the exon 19 mutation 
or L858R mutation treated with afatinib were significantly 
longer than those treated with gemcitabine/cisplatin (11.0 
vs. 5.6 months). Moreover, the afatinib group had a better 
objective remission rate (ORR) (66.9% vs. 23.0%) and 
disease control rate (92.6% vs. 76.2%). The LUX-Lung 7 
study (11) compared the efficacy of afatinib and gefitinib as 
the first-line treatment for patients with EGFR mutation. 
The results showed that the median PFS in the afatinib 
group was slightly longer (11.0 vs. 10.9 months), and there 
was no significant difference in safety. Based on these 
studies, the Food and Drug Administration (FDA) approved 
afatinib as a first-line treatment for advanced NSCLC 
patients with the EGFR exon 19 deletion or the exon 21 
mutation (L858R mutation) on July 12th, 2013. However, 
second-generation EGFR-TKI is expensive, and its binding 
with wild-type EGFR can cause related toxicity. These 
shortcomings hamper the clinical application of second-
generation EGFR-TKI.

Osimertinib is an irreversible third-generation EGFR-
TKI, which is sensitive to the EGFR mutation and T790M 
resistance mutation. The AURA 2 study (12) showed that 
median PFS was 9.9 months, ORR was 70%, and the 
1-year overall survival (OS) rate was 81%. The AURA 
3 study (13) showed that the osimertinib group had a 
longer PFS than the pemetrexed/cisplatin group (10.1 
vs. 4.4 months), and the side effects were lower than 
the chemotherapy group. On November 13th, 2015, the 
FDA approved osimertinib for the treatment of NSCLC 
patients with the T790M mutation during or after EGFR-
TKI treatment. In the FLAURA study (14), the median 
PFS was significantly prolonged in the osimertinib group 
(18.9 vs. 10.2 months), and the level 3 adverse events 
were less (34% vs. 45%) in the osimertinib group. This 
established the position of osimertinib as the first-line 
drug for patients with EGFR mutation. However, the 
mechanisms of resistance to third-generation EGFR-TKI 
began to appear, including HER2 amplification, KRAS 
mutation, and CMET amplification.

Combination therapy is also emerging for new drug 
resistance mechanisms, for example, combination therapy 

with EGFR-TKI and pathway inhibitors, including 
inhibitors of IGF-1R, HER2, PI3K, and mTOR (15-18). 
Compared with EGFR-TKI alone, these combination 
therapies can improve the therapeutic effect to some extent. 
However, these inhibitors also have their disadvantages, 
such as a higher cost and higher toxicity. The disadvantages 
limit the clinical application of these treatments. Therefore, 
in the course of clinical treatment, there is an urgent need 
for a cheap, low-toxicity, high-efficiency treatment for 
EGFR-TKI resistance, which will bring better curative 
effect to patients.

Metformin and lung cancer

Metformin is a kind of oral hypoglycemic drug, which has 
been proven to reduce fasting blood sugar. Since its advent in 
1957, it has been used in clinic for more than 60 years (19).  
Metformin is the preferred oral hypoglycemic agent for 
patients with type 2 diabetes. It mainly inhibits hepatic 
gluconeogenesis, reduces hepatic glycogen production, 
and increases the utilization of glucose by skeletal muscles 
and fat cells, thereby reducing blood sugar, mainly by 
activating adenosine 5'-monophosphate-activated protein 
kinase (AMPK) signaling pathway (20-23).

After analyzing several studies from 2009 to 2013, it 
was concluded that patients with type 2 diabetes mellitus 
who use metformin have a lower risk for lung cancer (24).  
In recent years, experimental studies have shown that 
metformin can inhibit tumor cell proliferation and 
improve tumor sensitivity to chemotherapy drugs and 
small molecule targeted anticancer drugs (25). Therefore, 
the application of metformin can reduce the incidence of 
cancer and improve the prognosis of diabetic patients (26). 
Additionally, studies have further pointed out that in the 
treatment of type 2 diabetic NSCLC patients with EGFR 
mutations, a combination of metformin and EGFR-TKI 
has been shown to have a synergistic effect that delays the 
onset of resistance and results in longer PFS and OS (27)  
(PFS: 19.0 vs.  8.0 months,  P=0.005; OS: 32.0 vs.  
23.0 months, P=0.002) (Figure 1).

Metformin is associated with reversal of EGFR-
TKI resistance

Metformin inhibits the IGF-1R pathway and makes drug-
resistant cells re-sensitive to EGFR-TKI

Several studies have reported that the activation of the 
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IGF-1R pathway may lead to a resistance of EGFR-TKI  
(28-31). IGF-1R is a transmembrane tyrosine-protein kinase 
receptor expressed on the surface of many types of cells with 
potential mitogen action. After IGF-1R binds to ligand, 
phosphorylation of IGF-1R activates RAS/RAF/MAPK and 

PI3K/AKT/mTOR pathways promote intracellular mitosis, 
induce cell proliferation and differentiation, while inhibiting 
apoptosis (32-34).

First-generation EGFR-TKI erlotinib increases 
the level of EGFR/IGF-1R heterodimers in NSCLC 
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Figure 1 Kaplan-Meier estimates of (A) progression-free survival (PFS) as a whole; (B) overall survival (OS) as a whole; (C) PFS in a 
subgroup of patients treated with first-line EGFR-TKI; (D) OS in the subgroup of patients treated with first-line EGFR-TKI; (E) PFS in 
the subgroup of patients treated with second-line EGFR-TKI; (F) OS in the subgroup of patients treated with second-line EGFR-TKI. 
EGFR-TKI, epidermal growth factor receptor-tyrosine kinase inhibitor.
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cell membranes, activates IGF-IR and its downstream 
signaling medium IGFBP3 (28,30), stimulates surviving 
protein synthesis, and counteracts the anti-tumor effect of  
erlotinib (28). IGF-1R inhibitors can inhibit the expression 
of IGFBP3 (15,30). While IGF-1R also activates the 
PI3K/AKT pathway (35,36). The AKT signaling pathway 
plays an important role in various biological activities 
such as cell proliferation and apoptosis (33,34), while 
increasing the kinase activity of AKT and promoting 
cell transformation can make cells resistant to TKI (37). 
Inactivation of the AKT signaling pathway leads to a 
significant increase in BIM protein (38,39). BIM protein 
promotes mitochondrial release of cytochrome C, whereas 
cytochrome C activates caspases, which mediate apoptosis 
via mitochondria (40,41).

IGF-1R inhibitors, such as α-IR3, AG-1024, or R1507 
interact with EGFR-TKI to enhance TKI-induced 

cell growth inhibition and apoptosis (42). Moreover, 
knockdown of IGF-1R by siRNA can also enhance the 
sensitivity of EGFR-TKI resistant cells to EGFR-TKI (43). 
Studies have also shown that metformin can also inhibit  
IGF-1R signaling in cancer cells (44-46). In short, 
metformin can restore the sensitivity of EGFR-TKI-
resistant cells to EGFR-TKI by inhibiting the IGF-1R 
pathway, and inhibit the expression of IGFBP3 (30), down-
regulate AKT, and enhance BIM-mediated synergistic anti-
tumor effects (43) (Figure 2).

Metformin inhibits IL-6 and TGF-β signaling pathways 
to reverse epithelial-mesenchymal transformation (EMT) 
and overcome TKI resistance

EMT refers to the biological process of epithelial cells 
transforming into mesenchymal phenotype cells through 
specific procedures, which is an important biological 
process for epithelial-derived malignant tumor cells to 
acquire migration and invasion ability. It is characterized 
by the loss of the polarity of epithelial cells and the loss of 
connection with the basement membrane, which enhances 
the motility of cancer cells and increases invasion, 
proliferation and metastasis (47,48). EMT and EGFR-TKI 
are closely related to lung cancer cell sensitivity (49,50). 
In vitro studies showed that the resistance of mesenchymal 
phenotype to EGFR-TKI was higher than that of the 
epithelial phenotype (51). AXL is a marker of EMT and 
is up-regulated in NSCLC patients with EGFR-TKI 
resistance, with AXL’s activation being an important cause 
of EGFR-TKI resistance (52).

EGFR-TKI treatment causes IL-6 to activate IL-6R in 
an autocrine manner, thus causing IL-6R/JAK1/STAT3 
signaling to activate (53). The IL-6R signaling pathway is 
more strongly activated in TKI-resistant cells compared 
to sensitive cells (54). Activation of signaling pathways by 
IL-6 is a key factor in the development of EMT in tumor  
cells (55). Also, studies have reported that TGF-β is an 
important driver of the EMT genetic program (48,56), and 
can induce activation of the IL-6 axis signaling pathway in 
lung cancer cells (48,57). Therefore, TGF-β and IL-6 are 
considered to be important targets for overcoming EGFR-
TKI resistance in lung cancer cells (48,57-59).

Studies have shown that metformin can impair the TGF-
β-induced mesenchymal state in a variety of pathological 
processes .  I t  can hinder  TGF-β-promoted EMT  
processes (56), reduce IL-6 secretion, thereby inhibiting 
signaling in the IL-6R/JAK1/STAT3 pathway (55,60), and 

Figure 2 IGF-1R inhibitors and metformin inhibit the expression 
of IGFBP3 and also inhibit the PI3K/AKT pathway. Inactivation 
of the AKT signaling pathway leads to a significant increase in BIM 
protein, which promotes mitochondrial release of cytochrome C, 
whereas cytochrome c activates caspases, which mediate apoptosis 
through mitochondria.
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restore the sensitivity of drug-resistant cells to EGFR-TKI. 
Also, some experiments have found that when IL-6 was 
added to EGFR-TKI drug-resistant cell lines pretreated 
with metformin, the effect of metformin disappeared. The 
cell lines resumed their resistance to EGFR-TKI, and re-
activated the IL-6 signaling pathway (54). This suggests 
that metformin can overcome TKI resistance by reversing 
the EMT process and inhibiting the IL-6 signaling pathway, 
making cells re-sensitive to EGFR-TKI (61). Therefore, 
reversing the EMT process and preventing IL-6 signaling 
pathway transduction may be an effective way to improve 
the response of EGFR-TKI therapy (Figure 3).

Metformin and EGFR-TKI inhibit tumor cell growth 
through the LKB1-AMPK-mTOR pathway

Metformin and gefitinib have synergistic effects in 
LKB1 wild-type NSCLC cells and show significant anti-
proliferative and pro-apoptotic activities, which are 
dependent on the LKB1 mutation status (61). Algire and 
colleagues reported that (62) cancer cells lacking LKB1 
protein expression did not respond to metformin in vitro. 
LKB1 gene alterations are more often detected in NSCLC 
compared to small cell lung cancer, and the frequency of 
LKB1 genetic alterations is higher in cancer cell lines with 
KRAS mutations (63).

At the cellular level, metformin interferes with 
mitochondrial respiration and interferes with cellular energy 
metabolism, resulting in an increased intracellular ratio of 
AMP:ATP. This can lead to the activation of AMPK by 
LKB1 (64), a serine/threonine-protein kinase regulator 
of cellular metabolism (65). Some in vitro and in vivo 
studies have shown that AMPK activation inhibits mTOR 
signaling (66-70) and inhibits tumor cell proliferation  
(71-73). mTOR is an important target protein downstream of 
AMPK and is involved in the regulation of protein synthesis, 
cell cycle and apoptosis. When mTOR activity is decreased, 
phosphorylation of downstream S6K and 4E-BP leads to the 
inhibition of mRNA translation and the reduction of protein 
synthesis while playing an anti-tumor role (66-70,74). Thus, 
metformin and EGFR-TKI inhibit tumor cell growth via the 
LKB1/AMPK/mTOR pathway (Figure 4).

The use of metformin produces adverse 
reactions

Domestic reported that the incidence of gastrointestinal 
reactions of metformin was 15% (Grade I) (75). The 
symptoms of the reactions are a lack of appetite, nausea, 
vomiting, abdominal pain, diarrhea, etc., and the incidence 
rate is 20–30% (76). If a serious gastrointestinal reaction 
occurs after increasing the dose, the previous lower 
dose can be tried again, and the dosage subsequently 
i n c r e a s e d  a c c o r d i n g  t o  p a t i e n t  t o l e r a n c e  ( 7 7 ) .  
In addition, sustained release preparations may also be 
selected to reduce gastrointestinal symptoms in patients. 
Multiple studies (78-80) have shown that long-term 
use of metformin can cause a decrease in vitamin B12 

Figure 3 Treatment with EGFR TKI causes IL-6 to activate IL-
6R in an autocrine manner, causing IL-6R/JAK1/STAT3 signaling, 
which is a key factor in EMT in tumor cells. An important driver 
of the TGF-β (EMT) genetic program, and can induce activation 
of the IL-6 axis signaling pathway in lung cancer cells. Metformin 
blocks the TGF-ß-promoted EMT process, thereby reducing IL-6 
secretion, inhibiting IL-6R/JAK1/STAT3 signaling, and restoring 
the sensitivity of drug-resistant cells to EGFR-TKI. EMT, 
epithelial-mesenchymal transformation; EGFR-TKI, epidermal 
growth factor receptor-tyrosine kinase inhibitor.
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levels. Therefore, it is recommended that if patients 
need long-term use of metformin, vitamin B12 should 
be appropriately supplemented during the treatment. 
Treatment of type 2 diabetes includes metformin alone, 
with little or no hypoglycemia, but a few special patients 
may have hypoglycemia (6.5%); the most serious and 
rare adverse reaction is lactic acidosis, which has a low 
incidence of about 3/100,000, but the mortality rate can 
be as high as 60% (81).

Conclusions

Drug resistance is a major problem in the treatment of 
EGFR-mutant NSCLC patients. The second-generation and 
third-generation EGFR-TKI drugs can bring about certain 
effects, but they will eventually become resistant. Moreover, 
combination therapy can have a certain therapeutic effect, 
but because of its high price and high toxicity, it has been 
limited in clinical application.

The discovery of the role of metformin in the treatment 
of lung cancer can provided new ideas in the treatment of 
EGFR-mutant lung cancer patients. It has been found that 

metformin can inhibit the IGF-1R pathway and make drug-
resistant cells re-sensitive to EGFR-TKI. It can inhibit IL-6 
and TGF-β signaling pathways to reverse EMT, overcome 
TKI resistance, and can also be combined with EGFR-TKI. 
In application, using the LKB1/AMPK/TOR pathway to 
inhibit tumor cell growth can bring better PFS and OS to 
lung cancer patients with the EGFR mutation.

However, although metformin has a certain role in the 
treatment of EGFR-mutant NSCLC patients, we should 
also be wary of the adverse reactions caused by metformin, 
including gastrointestinal reactions, hypoglycemia, etc., 
the dosage of metformin should be carefully controlled, or 
another drug intervention should be applied.
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