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Introduction

The inhibitor of nuclear factor B kinase (IKK)-nuclear 
factor B (NFB) pathway is one of the most important 
cellular signal transduction pathways (1). It consists of 
members of the NFB family and the family of inhibitors 
of NFB (IB), the IB kinase (IKK) complex, and various 
other regulatory components. The NFB family includes 
RelA (p65), RelB, c-Rel, NFB1/p105 (p50 precursor), and 
NFB2/p100 (p52 precursor); the IB family consists of 
IB, IB, IB, Bcl-3, p100/IB, and p105/IB; and the 
IKK complex is composed of two catalytic subunits, IKK 
and IKK, and the regulatory subunit IKK. Normally, 
members of the NFB family form a heterodimer/
homodimer that resides in the cytoplasm as an inactive 

complex in association with a member of the IB family. 
Upon stimulation with a stimulus, the so-called canonical 
or classical pathway is activated, leading to the activation of 
IKK complex. Activated IKK and/or IKK phosphorylate 
IB at S-32 and S-36. This causes IB ubiquitination 
and degradation by the 26S proteasome, thereby, allowing 
NFB to translocate into the nucleus to regulate NFB 
target genes. Alternatively, NFB can be activated through 
the non-canonical pathway in which some NFB stimuli can 
induce IKK activation via NFB-inducing kinase, resulting 
in the formation of p52 after p100 is phosphorylated by 
the activated IKK and degraded by the proteasome via 
the ubiquitin-dependent process. Through regulation of 
its target genes, NFB can regulate various physiologic 
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processes such as cell proliferation, migration and survival. 
Its dysregulation has been implicated in carcinogenesis and 
tumor development and progression (2-5).

In addition, an increasing body of evidence suggests that 
activation of the IKK-NFB pathway also plays a pivotal 
role in the development of cancer resistance to ionizing 
radiation (IR) and chemotherapy (2,4,6,7). This is because 
IR and many chemotherapeutic agents can activate NFB 
through the atypical NFB activation pathway by induction 
of DNA double-strand breaks (DSBs) (8,9). Activation of 
the IKK-NFB pathway renders many types of tumor cells 
more resistant to IR and chemotherapy presumably via 
induction of anti-apoptotic proteins (2,4,6,7). Therefore, 
inhibition of the NFB transcriptional activity has been 
extensively exploited as a novel approach to sensitize 
cancers to radiotherapy and chemotherapy, but has 
achieved mixed results (2,4,6,7,10). However, some more 
recent studies provide new insights into the mechanisms 
whereby activation of the IKK-NFB pathway increases 
tumor cell resistance to IR and chemotherapy. These new 
developments could make a molecular targeted inhibition of 
the IKK-NFB pathway more effective in sensitizing tumor 
cells to cancer therapy.

Activation of the IKK-NFκB pathway by 
radiotherapy and chemotherapy

IR and various chemotherapeutic drugs are potent 
DNA damage agents. Exposure of cells to IR and 
chemotherapeutic agents such as camptothecin (CT), 
etoposide, or doxorubincin (DOX) induces DSBs. As 
shown in Figure 1, DSBs stimulate poly(ADP-ribose) 
polymerase-1 (PARP-1) and the kinase ataxia telangiectasia 
mutated (ATM). PARR-1 recruits nuclear IKK, the E3 
ligase PIASy (protein inhibitor of activated STAT Y) 
and the activated ATM into a complex to facilitate IKK 
sumoylation and phosphorylation by PIASy and ATM 
consecutively and then IKK mono-ubiquitilation by a yet 
unidentified E3 ligase (11,12). The post-translationally 
modified IKK and activated ATM are then exported from 
the nucleus to the cytoplasma (8,9). In the cytoplasma, 
ATM functions as a scaffold protein to aid the assembling 
of the signalosomes consisting of the ubiquitin-conjugating 
enzyme UBC13, the E3 ligase tumor necrosis factor 
receptor-associated factor 6 (TRAF6) and cellular inhibitor 
of apoptosis protein 1 (cIAP1) or UBC13, the E3 ligase 
X-linked inhibitor of apoptosis protein (XIAP) and ELKS 
(protein rich in glutamate, leucine, lysine, and serine) in a 

stimulus-dependent manner. In the signalosomes, TRAF6 
undergoes auto-ubiquitilation to recruits transforming 
growth factor  (TGF)-activated kinase1 (TAK1) and 
the TAK1-binding proteins TAB2 into the IKK complex 
composed of IKK, IKK and IKK (11,12). Alternatively, 
ELKS is ubiquitilated by XIAP, which in turn promotes the 
formation of TAB2-TAK1 and IKK// complexes (11,12). 
The formation of these signalosomes facilitate TAK1 auto-
phosphorylation and IKK trans-phosphorylation by TAK1, 
leading to the activation of IKK (11,12). The activated 
IKK phosphorylates IB to induce its ubiquitilation and 
then degradation by the 26S proteasome, which releases 
NFB for nuclear translocation to initiate the transcription 
of NFB target genes (1,9,13). In addition, activated IKK 
can also regulate various cellular functions in an NFB-
independent manner (14,15). Both NFB-dependent and 
independent effects of IKK can contribute to tumor 
resistance to cancer therapy as discussed below.

NFκB-dependent effects

NFB is a transcriptional factor that binds to specific DNA 
sequences in target genes, designated as B-elements. 
Most B-elements are 10 bp in length with the consensus 
sequence 5'-GGGRNWYYCC-3', where R denotes a 
purine base, N means any base, W stands for an adenine 
or thymine, and Y represents a pyrimidine base (16,17). 
There are more than 400 genes that contain B-elements 
and their expression can be regulated by NFB but in a cell-
type specific and a cell context-dependent manner (7,10). 
Among these NFB-targeted genes, a number of them 
are anti-apoptotic genes including bcl-2, bcl-xL, survivin, 
and XIAP. Increased expression of these genes induced by 
NFB activation has been implicated in radioresistance 
and chemoresistance in a wide variety of tumor cells. As 
such, inhibition of the NFB transcriptional activity has 
been extensively exploited as a novel approach to sensitize 
cancers to radiotherapy and chemotherapy (2,4,6,7). For 
example, HT1080 human fibrosarcoma cells expressing 
a super-repressor form of IB were more sensitive to 
daunorubicin and IR-induced apoptosis than the wild-type 
HT1080 cells (18). Inhibition of NFB activity using an 
NFB decoy reduced chemoresistance of human stomach 
cancer cell line to 5-fluorouracil treatment (19). The 
sensitivity of breast cancer cells to paclitaxel was enhanced 
by IB super-repressor and parthenolide that inhibited 
the constitutive NFB activity in the cells (20). Treatment 
of resistant Capan-1 and 818-4 pancreatic cancer cells with 
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various NFB inhibitors or transfection of the cells with an 
IB super-repressor increased the induction of apoptosis 
by etoposide or doxorubincin (DOX) (21). Down-regulation 
of RelA by RNAi sensitized HCT116 colon cancer cells 
to CPT-11 (22). Inhibition of NFB activity increased 
the cisplatin-induced apoptosis in the cisplatin-resistant 
Caov-3 ovarian cancer cells not only in vitro but also in 
vivo (23). Curcumin potentiated the antitumor activity of 
gemcitabine in an orthotopic pancreatic cancer model in 
part via inhibition of NFB-regulated gene expression (24). 
Targeted inhibition of NFB with a RNA aptamer reduced 

tumor resistance to Dox in A549 human non-small cell 
lung cancer cells both in vitro and in vivo (25). The list of 
publications demonstrating that NFB inhibition using a 
variety of inhibitors sensitizes various types of tumor cells 
to the induction of apoptosis by different chemotherapeutic 
agents are still growing (2,4-7,10). Similarly, inhibition of 
NFB also increased apoptosis of various types of cancer 
cells induced by IR (2,4-7,10). It was reported that human 
malignant glioma cell lines overexpressing IB were more 
sensitive than the parental cells to IR (26). Expression of 
a dominant negative IB in Hela cells increased their 

Figure 1 Activation of the IKK-NFB pathway by radiotherapy and chemotherapy. Exposure of cells to IR and chemotherapeutic agents 
(Chemo) induces DSBs and activates both PARP-1 and ATM. PARP-1 recruits nuclear IKK, PIASy and ATM into a complex to facilitate 
IKK sumoylation, phosphorylation, and mono-ubiquitilation. The post-translationally modified IKK and activated ATM are then exported 
from the nucleus to the cytoplasma. In the cytoplasma, ATM functions as a scaffold protein to aid the assembling of the signalosomes 
consisting of UBC13, TRAF6 and cIAP1 or UBC13, XIAP and ELKS in a stimulus-dependent manner. In the signalosomes, TRAF6 
undergoes auto-ubiquitilation to recruit TAK1 and TAB2 into the IKK complex composed of IKK//. Alternatively, ELKS is ubiquitilated 
by XIAP, which in turn promotes the formation of TAB2-TAK1-IKK// complexes. The formation of these signalosomes facilitate TAK1 
autophosphorylation and IKK trans-phosphorylation by TAK1, leading to the activation of IKK. The activated IKK phosphorylates 
IB to induce its ubiquitilation and then degradation by the 26S proteasome, which releases NFB (p50/p65) for nuclear translocation to 
initiate the transcription of NFB target genes, including those encoded various anti-apoptotic proteins. In addition, activated IKK can also 
phosphorylate Foxo3a and other unknown substrates to regulate the repair of DSBs and other cellular functions in an NFB-independent 
manner. Both NFB-dependent and -independent effects of IKK can contribute to tumor resistance to cancer therapy by induction of the 
expression of anti-apoptotic proteins and promotion of the repair of DNA damage, respectively
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sensitivity to IR-induced cytotoxicity (27). Inhibition of 
NFB activation with PS-341 or infection with an adenovirus 
encoding IB super-repressor increased IR-induced 
apoptosis and enhanced radiosensitivity in colorectal cancer 
cells in vitro and in vivo (28). Human squamous carcinoma 
SCC-35 cells stably expressing a truncated human RelA 
exhibited a deficiency in radiation-induced NFB activation 
and a higher sensitivity to radiation-induced apoptosis 
(29). Curcumin also potentiated the antitumor effects of 
IR in HCT 116 colorectal cancer xenografts in nude mice 
by suppressing NFB and NFB-regulated gene products 
(30). However, not all tumor cells are killed by IR and 
chemotherapy through induction of apoptosis. Some die 
via induction of mitotic cell death or senescence after 
exposure to a chemotherapeutic agent and/or IR (31,32). 
Furthermore, other studies showed that activation of NFB 
sometimes played a pro-apoptotic role in certain conditions 
(33,34). This is because activation of NFB can also up-
regulate the expression of the pro-apoptotic death receptors 
DR4, DR5, Fas and Fas ligand in a drug-specific and cell 
type-dependent manner (33-36). Therefore, recent studies 
have been focused on the identification of the upstream 
components of the IKK-NFB pathway, in which inhibition 
can sensitize tumor cells to radiotherapy and chemotherapy 
in both apoptosis-dependent and apoptosis-independent 
manners.

NFκB-independent effects

Although IKK plays an essential role in NFB activation 
induced by various cancer therapies via induction of IB 
phosphorylation, ubiquitilation and degradation, it has many 
other NFB-independent functions (14,15). Some of these 
functions have been implicated in regulation of tumor cell 
sensitivity to IR and chemotherapy. For example, IKK can 
phosphorylate the tumor suppressor Foxo3a and consequently 
induces Foxo3a nuclear exclusion and degradation, thereby 
inhibiting Foxo3a-mediated transcription of genes encoding 
molecules that can promote cell-cycle arrest and apoptosis 
(37,38). Therefore, inhibition of IKK can increase Foxo3a 
anti-tumor function. In addition, it has been shown that 
IKK can directly phosphorylate Aurora kinase A to regulate 
its stability for the maintenance of bipolar sindle assembly 
and genomic stability (39). However, a recent study showed 
that inhibition of IKK with a specific inhibitor affects 
cell cycle progression at multiple positions without direct 
inhibition of various mitotic kinases including cyclin-
dependent kinase 1, Aurora A and B, polo-like kinase 1, 

and NIMA (never in mitosis gene a)-related kinase 2 (40). 
Therefore, the mechanisms by which IKK regulates cell 
cycle progression have yet to be determined. Furthermore, 
IKK can phosphorylate p53 at serines 362 and 366 which 
leads to p53 ubiquitilation and degradation by -tranducin repeat-
containing protein in an Mdm2-independent manner (41). This 
suggests that IKK inhibition can stabilize p53 to induce 
tumor cell cycle arrest and/or apoptosis.

It  has  been well  establ ished that  IR and many 
chemotherapeutic drugs kill cancer cells primarily by 
induction of DSBs and efficient repair of DSBs is required 
for the clonogenic survival of the cells exposed to IR 
and chemotherapeutic agents (42,43). Therefore, in our 
recent studies we examined whether activation of the IKK-
NFB pathway by IR can promote cancer cell survival 
in part by regulating the repair of DSBs in an IKK-
dependent but NFB-independent manner (44). We first 
used BMS-345541 (BMS), a specific IKK  inhibitor (45), 
to selectively inhibit the IKK-NFB pathway and found 
that it could significantly inhibit the repair of IR-induced 
DSBs in MCF-7 human breast cancer cells and H1299 and 
H1648 human lung cancer cells. Interestingly, selective 
inhibition of the NFB transcriptional activity by ectopical 
expression of a mutant IB or down-regulation of RelA by 
RNAi had no such effect. The repair of DSBs was also not 
affected by down-regulation of IKK expression with IKK 
shRNA, but was significantly inhibited by silencing IKK 
expression with IKK shRNA. Similar findings were also 
observed in IKK and/or IKK knockout mouse embryonic 
fibroblasts. More importantly, inhibition of IKK with an 
inhibitor or down-regulation of IKK with IKK shRNA 
sensitized MCF-7 cells to IR-induced clonogenic cell death 
in an apoptosis-independent manner. DSB repair function 
and resistance to IR were completely restored by IKK 
reconstitution in IKK-knockdown MCF-7 cells. These 
findings demonstrate that IKK regulates the repair of 
DSBs and inhibition of IKK activity can sensitize cancer 
cells to IR at least in part via inhibition of DSB repair. As 
such, specific inhibition of IKK may represents a more 
effective approach to sensitize cancer cells to radiotherapy. 
In addition, our preliminary studies also show that IKK 
inhibition by BMS can suppress the repair of DSBs induced 
not only by IR but also by the chemotherapeutic agent 
methotrexate (MTX) (Figure 2). Inhibition of DSB repair 
by BMS also led to sensitization of MCF-7 cells to MTX. 
Therefore, IKK inhibitors such as BMS have the potential 
to be used as tumor sensitizers for chemotherapy as well.

However, the mechanisms by which IKK regulates DSB 
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repair have yet to be elucidated. Although our data showed 
that IKK can regulate the repair of DSBs independent 
of the NFB-RelA transcriptional activity, it remains to 
be determined if activation of the other members of the 
NFB family by IKK, such as c-Rel, may be involved in 
the regulation of DSB repair. For example, a recent report 
showed that activation of IKK up-regulates the expression 
of Claspin via c-Rel (46). Claspin can regulate DNA 
damage-activated checkpoint response by promoting ataxia 
telangiectasia and Rad3-related protein (ATR)-mediated 
Chk1 phosphorylation and activation (39,47). However, it is 
not unexpected to find that IKK may regulate DSB repair 
independent of NFB, because several non-IB targets of 
IKK have been identified recently and their numbers are 
rising (14,48). For example, it has been shown that IKK 
can directly phosphorylate Aurora kinase A to regulate its 
stability for the maintenance of bipolar sindle assembly 
and genomic stability (39). Particularly, a recent study 
showed that IKK translocates to the nucleus following 

UV irradiation (49). It is plausible that IKK may enter the 
nucleus following IR treatments to directly regulate the 
DSB repair processes. Alternatively, it will be interesting to 
determine if IKK-dependent DSB repair could be initiated 
by a mechanism involving the cytoplasmic IKK-ATM axis 
(8,9,50). Identification of IKK substrate(s) required for 
DSB repair and elucidation of the mechanisms by which 
IKK regulates DSB repair will uncover novel molecular 
targets for sensitization of tumor cells to cancer therapy 
with IR and chemotherapeutic drugs in the future.

Sensitizing tumor cells to cancer therapy by 
molecularly targeted inhibition of IKKβ

As discussed above, molecularly targeted inhibition of 
IKK can inhibit both NFB-dependent and -independent 
effects and sensitize tumor cells to IR and chemotherapy in 
apoptosis-dependent and -independent manners. Therefore, 
IKK has emerged as a better target than other components 

Figure 2 IKK inhibition suppresses the repair of methotrexate (MTX)-induced DSBs and sensitizes MCF-7 cells to MTX-induced clonogenic 
cell death. A. MCF-7 cells were incubated with vehicle or 5 M BMS-345541 (BMS) for 1 h prior to treatment with 0.1 M MTX. After 1 h 
treatment with MTX, MTX was removed from the culture. The cells were either analyzed immediately (0 h) or continuously cultured 
with or without BMS for an additional 6 and 24 h before analysis by H2AX immunofluorescent staining. Cells without MTX treatment 
were included as controls (CTL). The average numbers of H2AX foci/cells from three independent experiments are presented as mean ±  
SE. ***P<0.001, vs. MTX alone; B. MCF-7 cells were incubated with vehicle or 2.5 M BMS for 1 h prior to treatment with increasing 
concentrations (0.025, 0.05, and 0.1 M) MTX. After 24 h treatment with MTX, MTX was removed from the culture. The cells were 
cultured with BMS for an additional 24 h and then continuously cultured for another 11 days without BMS before counting the colonies. 
Cells without MTX treatment were included as controls (CTL). The data are expressed as mean ± SE (n=3) of survival rate (%) compared to 
cells without MTX and BMS treatment. ***P<0.001 vs. vehicle-treated control cells
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in the IKK-NFB pathway for developing novel tumor 
sensitizers and substantial efforts have been devoted to the 
development of highly specific IKK inhibitors (5,10,51). 
Based on the mechanism of action, the known IKK 
inhibitors can be divided into three categories: adenosine 
triphosphate (ATP) analogs; allosteric inhibitors; and thiol-
reactive compounds. ATP analogs include -carboline 
natural products and derivatives such as PS-1145 and 
ML120B (5,51-53). BMS is a representative of allosteric 
IKK inhibitors (45,51). Thiol-reactive compounds that 
interact with IKK at Cys-179 include parthenolide and 
arsenite (54,55). All these compounds are highly specific 
toward IKK except thiol-reactive compounds. It was 
reported that PS-1145 and ML120B exhibited strong 
antitumor activities against multiple myeloma, diffuse large 
B-cell lymphoma, chronic myelogenous leukemia, and 
prostate cancer in several preclinical studies (56-58). BMS 
exerted an antitumor activity in a melanoma xenograft 
model by inducing melanoma cell apoptosis (59). It is likely 
that these compounds have the potential to be used as 
tumor sensitizers to enhance tumor cell response to IR and 
chemotherapy by selectively inhibiting the activation of the 
IKK-NFB pathway. This suggestion is supported by our 
recent in vitro study as discussed previously, in which we 
found that BMS increased IR- and MTX-induced tumor 
cell killing in part by inhibition of the repair of DSBs (44). 
It remains to be determined if IKK inhibitors can also 
sensitize tumor cells to cancer therapy in vivo.

Interestingly, even though BMS is cytotoxic to some 
tumor cells and can sensitize MCF-7 human breast cancer 
cells to IR and MTX, it is a relatively safe agent that does 
not cause noticeable normal tissue damage in vivo (60-62). 
Moreover, we have found that BMS does not adversely 
affect the clonogenic survival of mouse bone marrow 
hematopoietic progenitor cells in vitro with or without 
exposure to IR at a concentration (5 M) that is cytotoxic 
to MCF-7 cells and can sensitize the tumor cells to IR 
(Figure 3). However, extra caution has to be exercised to 
ensure that IKK inhibition with a potent inhibitor will 
not cause overly adverse effects before IKK inhibitors 
can be tested in clinic for cancer treatment, because 
inhibition of the IKK-NFB pathway can compromise 
patients’ immune systems. This risk can be mitigated by 
short treatment with the inhibitors to avoid long-term 
immunosuppression. Overcoming this and other potential 
health risks of inhibition of the IKK-NFB pathway will 
make IKK inhibitors a potential anti-tumor agent and a 
better tumor sensitizer.
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