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Background: First-line chemotherapeutic agents lead to remarkable activation treatment in cancers, but 
the side effects of these drugs also damage healthy cells. In some cases, drug resistance to chemotherapeutic 
agents is induced in cancer cells. The molecular mechanisms underlying such a side effect have been studied 
in a range of cancer types, yet little is known about how the adverse effects of chemotherapeutic drugs can be 
diminished by targeting bromodomain-containing protein 9 (BRD9) in gastric cancers.
Methods: We used two gastric cancer cell lines (MGC-803 and AGS) for comparison. We applied 
molecular and cellular techniques to measure cell survival and mRNA expression, investigated clinical data 
in the consensus of The Cancer Genome Atlas, and utilized high-throughput sequencing in MGC-803 cells 
and AGS cells for global gene expression analysis in inhibiting BRD9 conditions.
Results: Our studies showed that cancer cells with BRD9 overexpression, MGC-803 cells, were more 
sensitive to BRD9 inhibitors (i.e., BI9564 or BI7273) than AGS cells. The mechanism of BRD9 was related 
to the regulation of calcium voltage-gated channel auxiliary subunit alpha2 delta 4 (CANA2D4), calmodulin-
like 6 (CALML6), guanine nucleotide binding protein (G protein), alpha activating activity polypeptide 
O (GNAO1) and Potassium Inwardly Rectifying Channel Subfamily J, Member 5 (KCNJ5) oncogenes in 
the oxytocin signaling pathway. BRD9 inhibitors could enhance the sensitivity of gastric cancer MGC-803 
cells to adriamycin and cisplatin, so we may reduce the dosage of chemotherapeutic agents in curing gastric 
cancers with BRD9 over expression by combining BI9564 or BI7273 with adriamycin or cisplatin.
Conclusions: Our study elucidated the feasibility and effectiveness of inhibiting BRD9 to reduce the 
adverse effects of first-line chemotherapeutic agents in treating gastric cancer with BRD9 overexpression. 
This study provides a scientific theoretical basis for a chemotherapy regimen in gastric cancer with BRD9 
overexpression.
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Introduction

Adverse effects in the treatment of cancer patients are a 
major problem in both novel targeted therapeutics and 
conventional chemotherapeutics (1). Adriamycin [ADR 
or doxorubicin (Dox)] and cisplatin (CDDP), first-line 
chemotherapeutic medicines, are potent chemotherapeutic 
agents that are used for the treatment of numerous cancers 
(2,3). ADR’s mechanism of effect involves inhibiting the 
synthesis and damage of DNA (4) and the formation of 
reactive oxygen species (ROS) (5) to create oxidative stress 
in the cellular environment. The mechanism of CDDP 
is related to DNA double-stranded covalent crosslinks 
and DNA–CDDP adducts (6). Although multiple action 
mechanisms of ADR and CDDP exist, many healthy cells 
are destroyed to some extent; some cancers are developing 
drug resistance to these agents as well (6). Damaged 
healthy cells in patients with cancer also present depressed 
immunity, thereby preventing their healthy recovery. Many 
patients with cancer exhibit congenital or acquired drug 
resistance to chemotherapeutic agents, including ADR and 
CDDP. The mechanisms underlying the drug resistance 
of cancer cells include the increased expression of DNA 
repair genes, abnormal drug transport pathway, acetylation 
of histones, and epigenetic modifications activating the 
drug resistance pathway (7,8). These phenomena seriously 
reduce the efficacy and anti-cancer spectrum of first-
line chemotherapeutic drugs. Thus, the most urgent and 
important problem in the clinical application of first-line 
chemotherapeutic drugs is the downregulation of these side 
effects.

Recent studies showed that abnormal epigenetic control 
is one of the important reasons for the side effects of 
carcinoma drugs. In many carcinomas, epigenetic regulation 
involves gene expression, DNA repair, and DNA replication 
(9,10). Epigenetic regulation protagonists include writers, 
readers, and erasers, as well as members of chromatin-
remodeling complexes. Mutations in these genes are 
pervasive in cancer; few, if any, cancers escape mutations 
in one of these major chromatin rheostat proteins. Some 
studies showed that members of the mammalian switching 
defective/sucrose nonfermenting (SWI/SNF) chromatin-
remodeling complex are mutated in more than 20% of all 
cancers (11). These mutations and accompanying mutations 
in histones themselves can promote the development of 
malignancy and resistance to drugs in cancer cells (12). 
These findings firmly establish that epigenetic dysregulation 
plays a causal role in cancer initiation, progression, and drug 

resistance (13). However, the drugs targeting epigenetic 
regulation have fewer side effects than chemotherapeutic 
drugs in healthy cells. Given that most chemotherapeutic 
agents target oncogenes, many healthy cells’ DNA may be 
hurt by chemotherapeutic agents as well.

As epigenetic readers, bromodomain (BRD) proteins 
can recognize acetylated histone tails to facilitate the 
transcription of target genes. On the basis of structural 
conservation, 60 human BRDs can be divided into eight 
subfamilies. The IV family of BRD-containing proteins 
comprises seven members (BRPF1, BRPF2, BRPF3, 
BRD7, BRD9, ATAD2, and ATAD2b) (14). The BRD7 and 
BRD9 proteins are members of the SWI/SNF chromatin-
remodeling complex, which regulates gene expression 
(Figure 1A). BRD9 has been shown to recognize the doubly 
acetylated histone H4K5acK8a, the di-propionylated ligand 
H4K5prK8pr (Figure 1B,C), and histone H4K5buK8bu 
(15,16). 

We selected the BRD9 gene through consensus of The 
Cancer Genome Atlas (TCGA). In clinical cases and cancer 
cells, mutations of BRD9 are common. Data of cell lines 
from the TCGA database show that 21% of cancer cells 
mutate in BRD9 (Figure 1D). Other studies showed that 
abnormal BRD9 expression is related to cervical cancer, 
non-small cell lung cancer, and liver cancer (15-18). This 
kind of mutation is also found in endometrial cancer, 
squamous cell lung cancer, and prostate adenocarcinoma (19).  
One study showed that BRD9 mutation in PC9 cells leads 
to drug resistance to EGFP inhibitor (20). Although BRD9 
gene mutation is common, no study has investigated the 
role of BRD9 in gastric cancer. 

Data from the TCGA database showed 26% mutation 
in gastric cancer (Figure 2A). Crawford’s study showed 
that the BRD9 inhibitor decreases BRD9 binding to 
chromatin and prevents the emergence of a drug-resistant 
population in EGFR mutant PC9 cells treated with EGFR 
inhibitors (20). Hohmann and his team found that BRD9 
and the SWI/SNF chromatin remodeling complex is 
hyperactive in acute myeloid leukemia (AML) cells; they 
sustain MYC transcription and rapid cell proliferation and 
inhibit differentiation. Inhibiting BRD9 can reverse the 
proliferation of cancer cells induced by SWI/SNF (21). 
Although SWI/SNF composition and BRD9 were studied 
in these two cancer cells, the role of BRD9 in gastric cancer 
remains to be analyzed.

The incidence of gastric cancer is highest in eastern Asia 
than in other countries worldwide (22). To find an effective 
treatment for gastric cancer with BRD9 overexpression, 
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the role of BRD9 in this kind of cancer should be studied. 
Here, we showed that BRD9 changed the expression levels 
of CACNA2D4, CALML6, KCNJ5, and GNAO1 in the 
oxytocin signaling pathway and induced the proliferation of 
gastric cancer cells. AGS and MGC-803 cells are two types 
of gastric cancer cells; the expression of BRD9 in MGC-803  
cells was higher than that in AGS cells. MGC-803 cells 
were found to be more sensitive to BRD9 inhibitors (BI9564 
and BI7273) than AGS cells. The results revealed the 
potential signaling pathway controlled by BRD9 in BRD9-
overexpressed gastric cancer. When we combined BI9564 
or BI7273 with ADR or CDDP to treat these two types of 
gastric cancer cells, the dosage of ADR or CDDP needed 
by MGC-803 cells was minimized. The data and analyses 
provide the feasibility and effectiveness of inhibiting BRD9 
to reduce the adverse effects of first-line chemotherapeutic 
agents in treating gastric cancer with BRD9 overexpression. 
This study provided a scientific theoretical basis for 
chemotherapy regimen in gastric cancer.

Methods

Chemicals and reagents

We purchased 3-(4,5-dimethylthiazol2yl)-2,5-diphenyltetrazo-

lium bromide (MTT) from Sigma–Aldrich (St. Louis, MO, 
USA) and obtained PrimeScript RT reagent Kit and SYBR 
Premix Ex Taq TM from TaKaRa. The E.Z.N.A.® HP 
Total RNA Kit was a product of Omega Bio-Tek (Doraville,  
USA) (23). ADR and CDDP were procured from Zhejiang 
HISUN Pharmaceuticals Co. (Zhejiang, China) (23). 

Cell culture

The AGS and MGC-803 cell lines were cultured in our 
laboratory. Subsequently, 10% fetal bovine serum and 
RPMI 1640 medium (Gibco BRL) were added to these two 
cell lines, which were cultivated under a humidified 5% 
CO2 atmosphere at 37 ℃.

MTT assay

We used the MTT assay (Sigma–Aldrich, St. Louis, MO, 
USA) to determine drug sensitivity. AGS and MGC-803 
cells were seeded into 96-well plates at a concentration of 
5×103 cells/200 μL/well. Cells were hatched at 37 ℃ in a 
humidified 5% CO2 incubator. Following 48 h of treatment 
with specific concentrations of the anticancer drugs ADR 
or CDDP, BI9564 or BI7273 (purchased from Selleck) 

Figure 1 Information on BRD9. (A) BRD7/9 bromodomain-containing proteins are subunits in the SWI/SNF complexes; (B) coordination 
of H4K5prK8pr by BRD9; (C) surface representation of the BRD9 bromodomain dimer in complex with H4K5prK8pr (Monomers colored 
in green and blue); (D) landscape of genomic aberrations in the BRD9 gene in cancer cells.
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plates were added to a standard incubator. The medium 
was removed, and cells were solubilized in 150 μL of 
DMSO. The intensity of formazan was measured at 490 nm 
using an automated microplate spectrophotometer (iMark; 
BioRad, Hercules, CA, USA). Cell viability was calculated 
as follows: (OD value of the treated group/OD value of 
untreated group) × 100%. Each experiment was performed 
three times.

Analysis of drug sensitivity

The viability of AGS and MGC-803 cells following 
treatment with ADR or CDDP in the presence or absence 
of BI9564 or BI7273 (500 or 1,000 nm) was analyzed by 
MTT assay. After the dose–response curve was plotted, the 
IC50 (the concentration of the drug inhibiting 50% of cells) 
was calculated. 

Quantitative real-time PCR

Total mRNA of cells was extracted with TRIZOL 
reagent. The first strand of cDNA synthesis was generated 

from 2 μg of total RNA using oligo-dT primer and 
Superscript II Reverse Transcriptase (GIBCO BRL, 
Grand Island, NY, USA). Quantitative real-time PCR 
was carried out on an iCycler (Bio-rad, Hercules, USA) 
using confirmed primers and SYBR Premix Ex Taq 
II (Takara, Japan) for detection. The cycle number 
when the fluorescence first reached a preset threshold 
(Ct) was used to quantify the initial concentration of 
individual templates for the mRNA expression of genes 
of interest. Primer pairs were as follows: BRD9, forward 
5'-GCGACTTGAAGTCGGACGAGAT-3' and reverse 
5'-GTCCACCACTTTCTTGCTGTAGC-3'; CACNA2D4, 
forward 5'-CCAACAATGGCTACATCCTCTCC-3' and reverse 
5'-GATTCAGCCTGGTCTTCCCACT-3'; CALML6, forward 
5'-GGGCTACATTGACTGGAACACAC-3' and reverse 
5'-CCTCATAGTCGATGGTCCTGTC-3'; GNAO1, forward 
5'-CCGCTCACCATCTGCTTTCCTG-3’ and reverse 
5'-GGGCTGACTTGTTCTTGCTCTCG-3'; KCNJ5, 
forward 5'-GGTATGGCTTCCGAGTCATCACAG-3’ 
and reverse 5-TGAGGGTCTCCGCTCTCTTCTTG-3'; 
GAPDH, forward 5'-GCA CCGTCAAGGCTGAGAAC-3' 
and reverse 5'-TGGTGA AGACGCCAGTGGA-3'.

Figure 2 Expression of BRD9 in gastric cancer. (A) Landscape of genomic aberrations in the BRD9 gene in 407 patients with gastric cancer; 
(B) changes in the BRD9 gene in patients with gastric cancer; (C) RT-PCR results in six kinds of gastric cancer cells. *P<0.05.
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Results

BRD9-overexpressed MGC-803 cell model 

As shown in Figure 2A, 106 (26%) of 407 patients with 
gastric cancer demonstrated upregulated BRD9 expression. 
Changes in the BRD9 gene are shown in Figure 2B. About 
5% of patients with gastric cancer exhibited BRD9 gene 
amplification. On the basis of the above analysis, we chose 
six different types of gastric cancer cells (i.e., AGS, Fu97, 
MKN1, NCIN87, SNU1, and MGC803) to screen the 
BRD9 overexpression model. As shown in Figure 2C, 
BRD9 expression in MGC-803 cells was higher than that 
in AGS cells. To study the possibility of targeting BRD9 to 
downregulate the adverse effects of chemotherapeutic drugs 
on patients with BRD9-overexpressed gastric cancer, we 

chose MGC-803 cells as a BRD9-overexpressed model and 
AGS cells as the control group.

BRD9 inhibitors promote cytotoxicity in MGC-803 cells 

We chose BRD9 inhibitors, BI9564 and BI7273, to study the 
effect of depressing the BRD9 gene. As shown in Figure 3A, 
B, we found that the molecular structures of BI9564 and 
BI7273 were similar. 

Our study demonstrated that cancer cells with BRD9 
overexpression, namely, MGC-803 cells, were more 
sensitive to BI9564 and BI7273 than AGS cells. The 
therapeutic effects of treatment with BRD9 inhibitors on 
AGS and MGC-803 cells were investigated by MTT assay 
(Figure 3C,D,E,F). The IC50 values of BI9564 in AGS and 

Figure 3 Information on BI-9564 and BI-7273. (A) BI9564 molecular structure; (B) BI7273 molecular structure; (C) determination of IC50 
in AGS cells treating with BI9564; (D) determination of IC50 in AGS cells treating with BI7273; (E) determination of IC50 in MGC-803 
cells treating with BI9564; (F) determination of IC50 in MGC-803 cells treating with BI7273.
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MGC-803 cells were 488.97 and 350.28 nm, respectively 
(Figure 3C,D). The IC50 value of BI9564 in AGS cells 
was 1.4 times that in MGC-803 cells. The IC50 values 
of BI7273 in AGS and MGC-803 cells were 579.47 and  
447.90 nm, respectively (Figure 3E,F). The IC50 value 
of BI9564 in AGS cells was 1.3 times that in MGC-803 
cells. Thus, cancer cells with BRD9 overexpression were 
highly sensitive to BRD9 inhibitors, and the mechanism 
of BI9564 and BI7273 in inducing the apoptosis of BRD9-
overexpressed gastric cancer cells should be determined to 
explain this phenomenon.

BRD9 inhibitors control the oxytocin pathway 

To determine the signaling pathway controlled by BRD9 
inhibitors in gastric cancer cells, we sent the samples 
with BI9564 or BI7273 in AGS and MGC-803 cells to 
analyze differentially expressed genes. The differentially 
expressed genes were found through high-throughput 
sequencing analysis (Figures 4A,B,C). In accordance with the 
volcano map, we screened 22 downregulated genes and 25 
upregulated genes in MGC-803 cells after inhibiting BRD9 
(Figure 4C); we also screened 12 downregulated genes and 
11 upregulated genes in AGS cells after inhibiting BRD9 
(Figure 4D). On the basis of Figure 4C,D, we used software, 
database for annotation, visualization, and integrated 
discovery-DAVID to analyze these changed genes and 
discover some high-score carcinogenic pathways (Figure 4E).  
We then searched a large number of references and found 
that one of these pathways, namely, the oxytocin signaling 
pathway, may be related to BRD9 inhibitors. The pathway’s 
mechanism with BRD9 remains to be studied. 

BRD9 mediated the expression levels of CACNA2D4, 
CALML6, KCNJ5, and GNAO1 

To find the exact genes controlled by BRD9 in the oxytocin 
pathway, we applied the KEGG database, chose some 
changed genes, and verify the selected genes via RT-
PCR assay. KEGG analysis (24) revealed that upregulated 
CACNA2D4 could promote the increase in CALML6; 
these effects induced anti-apoptosis and inhibited oxytocin 
production (Figure 5A). The related literature reported that 
downregulated KCNJ5 can induce aldosterone-producing 
adenomas (25-27) and enhance the malignancy of triple-
negative breast cancer (28). Downregulation of GNAO1 
expression will increase apoptosis in gastric cancer cells 
(29,30) and upregulation of KCNJ5 will cause cancer 

suppression. The RT-PCR assay showed that the expression 
levels of CACNA2D4, CALML6, and GNAO1 were 
all downregulated after treatment by BI9564 or BI7273 
(Figure 5B,C,D), and KCNJ5 (Figure 5E) was upregulated 
in MGC-803 cells treated by BI9564 or BI7273. Inhibiting 
BRD9 could induce apoptosis and prompt the secretion 
of oxytocin. Studies have shown that oxytocin secretion is 
negatively correlated with the risk of esophageal, gastric, 
pancreatic, and ovarian cancer (31-34). Breastfeeding can 
induce the production of oxytocin; in this way, the risk 
of esophageal cancer is reduced by 54% (35). Therefore, 
promoting the secretion of oxytocin is conducive to 
inhibiting the occurrence and development of gastric 
cancer. From the above results, we speculated that BRD9 
regulates the oxytocin signaling pathway in gastric cancer 
and is associated with carcinogenic genes CACNA2D4, 
CALML6, KCNJ5, and GNAO1.

BRD9 inhibitors sensitize MGC803 cells to ADR and 
CDDP

From the above results, we found that BI9564 and 
BI7273 could inhibit CACNA2D4, CALML6, and 
GNAO1 and upregulate KCNJ5 expression levels in the 
oxytocin signaling pathway to induce apoptosis in BRD9-
overexpressed gastric cancer cells. We inferred that the 
combination of BI9564 or BI7273 with ADR or CDDP 
could cut down the dosage of chemotherapeutic agents 
in curing gastric cancer, reduce the adverse effect of 
chemotherapeutic agents, and decrease the possibility of 
inducing drug resistance in BRD9-overexpressed gastric 
cancer. First, we used the MTT assay to find the IC50 of 
ADR and CDDP in MGC-803 cells. The IC50 values of 
ADR and CDDP in MGC-803 cells were 0.972 and 1.889 
µg, respectively (Figure 6A,B). The viability of each dosage 
is shown in Tables 1,2. When we added 2.5 µg/mL ADR 
to MGC-803 cells, the cell viability decreased to 42.76%. 
However, when 500 nm BI9564 was added with 2.5 µg/mL 
ADR, the cell viability decreased to 22.44% in MGC-803 
cells (Figure 6C and Table 1). When the dosage of BI9564 
was enhanced to 1,000 nm and added with 2.5 µg/mL ADR, 
the cell viability of MGC-803 cells dropped to 15.95% 
(Figure 6D and Table 1). By contrast, when 5 µg/mL ADR 
was added to MGC-803 cells, the cell viability was still 
high at 41.48% (Figure 6A and Table 1). When the ADR 
dosage increased to 10 g/mL, the cell viability was 35.6% 
(Figure 6A and Table 1). The viability values of the single 
use of ADR to kill MGC-803 cells were higher than those 
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Figure 4 Analysis of the pathway induced by BI-9564 and BI-7273. (A) MGC-803 cells’ volcano map of differential gene expression. (B) 
AGS cells’ volcano map of differential gene expression. Green means downregulated genes and red means upregulated genes. (C) Effect 
of mutation on RNA transcription in MGC-803 cells. (D) Effect of mutation on RNA transcription in AGS cells. (E) Signaling pathway 
analysis from KEGG.
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of the combined method, even when the dosage of ADR 
was as high as 10 g/mL. Thus, the combination of BI9564 
with ADR in MGC-803 cells could greatly reduce the 
cell viability of MGC-803, and the effect of the combined 
treatment was superior to that of single treatment with 
ADR in MGC-803 cells. We changed the BRD9 inhibitor 
BI9564 to BI7273, and the same trends were observed as 
shown in Table 3, Figure 6E, and Figure 6F. The effects of 
the combination of BI7273 with ADR in MGC-803 cells 
were better than those of single treatment with ADR. To 
test the applicability of these methods in curing patients 
with BRD9-overexpressed gastric cancer, we changed 
ADR to CDDP in these experiments. Tables 2,4 show that 
the combination of BI9564 or BI7273 with CDDP could 
greatly decrease the survival rate in BRD9-overexpressed 
gastric cancer cells (Figures 6F,G,H,I,J). Therefore, BI9564 
and BI7273 could enhance the sensitivity of BRD9-
overexpressed gastric cancer cells to ADR and CDDP, cut 
down the dosage of chemotherapeutic agents, reduce the 
adverse effect of chemotherapeutic agents, and decrease 
the possibility of inducing drug resistance in BRD9-
overexpressed gastric cancer.

Discussion

The adverse effects of first-line chemotherapeutic drugs are 
a major challenge in curing patients with cancer, because 
most mechanisms of this type of medicine target DNA, and 
healthy cells are unavoidably damaged (36,37). Moreover, 
the quality of life of patients is greatly reduced, and poor 
prognosis or drug resistance may result (37). Some studies 
have shown that epigenetic changes are related to cancer 
occurrence and progression (38), so we inferred that 
considering epigenetic factors in curing cancer patients 
will help alleviate these problems. BRD9 is one of the 
epigenetic readers in clinical settings and is universal in a 
range of cancers, and the rate of changes in gastric cancer is 
26%. We sought to determine the carcinogenic mechanism 
involved in the role of BRD9 in these kinds of gastric 
cancers and understand the relationship between BRD9 and 
the carcinogenic pathway. We screened gastric cancer cells 
though RT-PCR assay. We chose MGC-803 cells as the 
BRD9-overexpressed model and AGS cells as the control 
model. We found that MGC-803 cells were more sensitive 
to the BRD9 inhibitor than AGS cells. In particular, 
inhibiting BRD9 in MGC-803 cells was more effective 
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Table 1 Comparison between using single treatment with ADR or combined treatment of BI9564 with ADR in MGC-803 cells

Anticancer drugs Cell type
ADR cell viability (%)

2.5 µg/mL 5 µg/mL 10 µg/mL

ADR (µg/mL) MGC-803 42.76 41.48 35.6

500 nmBI9564+ADR (µg/mL) MGC-803 22.44 25.56 22.76

1,000 nm BI9564+ADR (µg/mL) MGC-803 15.95 14.69 –

ADR, Adriamycin. Concentration gradient of ADR for MTT is 0, 2.5, 5, 10, 20, and 40 μg/mL.

Table 2 Comparison between the use of single CDDP or combined BI9564 with CDDP in MGC-803 cells

Anticancer drugs Cell type
ADR cell viability (%)

0.5 µg/mL 1 µg/mL 2 µg/mL

CDDP (µg/mL) MGC-803 94.19 84.81 23.91

500 nm BI9564 + CDDP (µg/mL) MGC-803 19.04 16.81 14.65

1,000 nm BI9564 + CDDP (µg/mL) MGC-803 13.36 13.06 -

CDDP, Cisplatin. Concentration gradient of CDDP for MTT is 0, 0.5, 1, 2, 4, and 8 μg/mL.

Table 3 Comparison between the use of single treatment with ADR or combined treatment of BI7273 with ADR in MGC-803 cells

Anticancer drugs Cell type
ADR cell viability (%)

2.5 µg/mL 5 µg/mL 10 µg/mL

ADR (µg/mL) MGC-803 42.76 41.48 35.6

500 nm BI7273 + ADR (µg/mL) MGC-803 25.9 23.38 18.68

1,000 nm BI7273 + ADR (µg/mL) MGC-803 13.58 12.2 -

ADR, Adriamycin. Concentration gradient of ADR for MTT is 0, 2.5, 5, 10, 20, and 40 μg/mL.

Table 4 Comparison between using single treatment with CDDP or combined treatment of BI7273 with CDDP in MGC-803

Anticancer drugs Cell type
ADR cell viability (%)

0.5 µg/mL 1 µg/mL 2 µg/mL

CDDP (µg/mL) MGC-803 94.19 84.81 23.91

500 nm BI7273 + CDDP (µg/mL) MGC-803 17.4 17.28 13.83

1,000 nm BI7273 + CDDP (µg/mL) MGC-803 13.72 12.84 -

CDDP, Cisplatin. Concentration gradient of CDDP for MTT is 0, 0.5, 1, 2, 4, and 8 μg/mL.

than that in AGS cells. From these results, we inferred that 
BRD9 may induce some oncogenic pathways in BRD9-
overexpressed cancer cells. The RNA-seq test, KEGG 
analysis, and literature search revealed the underlying 
carcinogenic mechanism, namely, the oxytocin pathway, 
caused by BRD9 in MGC-803 cells. We also analyzed 

the oncogene mRNA levels in the oxytocin pathway after 
adding BRD9 inhibitors. We found that CACNA2D4, 
CALML6, and GNAO1 were downregulated, whereas 
KCNJ5 was upregulated after adding BRD9 inhibitors 
in MGC-803 cells. The KEGG database showed that 
the downregulation of CACNA2D4 and CALML6 
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induces apoptosis (23). Some studies demonstrated that 
the upregulation of KCNJ5 (26,27) will induce cancer 
suppression, whereas the downregulation of GNAO1 (30,31) 
will induce apoptosis. Thus, CACNA2D4, CALML6, 
GNAO1, and KCNJ5 may serve as potential therapeutic 
targets in BRD9-overexpressed gastric cancer. 

ADR (a chemotherapeutic drug) and CDDP (a 
chemotherapeutic drug) are first-line chemotherapeutic 
agents for treating solid tumors (7,8). However, a large 
number of patients exhibit major side effects after 
chemotherapy and successive tumor reversion, thereby 
indicating the failure in treating cancer with ADR or 
CDDP (39-42). MTT assays revealed that the combined 
treatment of BI9564 or BI7273 with ADR or CDDP could 
enhance the treatment effect of ADR or CDDP and reduce 
the adverse effects of first-line chemotherapeutic agents to 
patients with BRD9-overexpressed gastric cancer. 

Our study offered one individualized drug use method 
based on genotype comparison to reduce chemotherapeutic 
side effects and identified a new regulatory pathway, 
BRD9/CACNA2D4/CALML6/GNAO1/KCNJ5, that 
may contribute the induction of chemotherapeutic drug 
resistance in BRD9-overexpressed gastric cancer cells. 
On the basis of this molecular mechanism, we found an 
effective therapy method in curing BRD9-overexpressed 
gastric cancer. The combination of BI9564 or BI7273 
with ADR or CDDP could greatly enhance the drug 
effects of chemotherapeutic drugs and decrease adverse 
effects associated with first-line chemotherapeutic agents. 
This study investigated the specific molecular mechanism 
of the BRD9-mediated oxytocin signaling pathway on 
BRD9-overexpressed gastric cancer and elucidated the 
feasibility and effectiveness of combining BRD9 inhibitors 
with first-line chemotherapeutic agents in curing BRD9-
overexpressed gastric cancers. This study provides a 
scientific theoretical basis for a chemotherapy regimen in 
BRD9-overexpressed gastric cancer.
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