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Introduction

Clear cell renal cell carcinoma (ccRCC) accounts for 70% 
of total renal carcinomas (1). The death rate remains high 
after metastasis, especially osseous metastasis, pulmonary 
metastasis, which occurs roughly 15% of total cases (2). 
Vascular endothelial growth factor (VEGF), raf kinase, 
and mammalian target of rapamycin (mTOR) inhibitors 
are the prevalent clinical drugs that have been utilized to 
treat ccRCC (3,4). More than 50% of ccRCC patients have 

impaired mTOR signaling pathway (2). Interferon (IFN) are 
often combined with other drugs to improve the therapeutic 
efficacy of these inhibitors (1). However, the mechanisms of 
tumor drug resistance in patients, particularly metastasis and 
relapse, remains unknown. A large number of hypotheses 
have been proposed, such as immune escape (5), tumors cell 
mutant (6,7), vesicle trafficking (8), and microenvironment 
unbalance (9). Recently, a number of studies indicate that 
extracellular vesicles, exosomes, play a crucial role in cell 
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communication (10,11).
Exosomes are small extracellular bilayered vesicles, with 

a diameter ranging between 30 to 150 nm. The biogenesis 
and release processes of exosome involve a series of 
proteins, signaling pathways, and organelles (12).

Serum extracellular vesicles (EVs) concentration was 
found to be higher in hepatocellular carcinoma than in all the 
other groups, while no evidence to show whether there was 
the alleviation of EVs in ccRCC. A large number of studies 
show tumor-derived exosomes (TEXs) could allow tumor 
cells to escape immune supervision and ultimately immune 
system mediated apoptosis (12). TEXs can also impact innate 
immune response via impairing IFN signaling pathway (13). 
For example, programmed cell death protein 1 is ineffective, 
due to the adverse effects of exosomes from tumor cells (14). 
Previous results indicate ccRCC has a higher activation of the 
mTOR signaling pathway (15), ERK signaling pathway (16,17), 
or STAT signaling pathway (18). Nevertheless, the evidence 
showing that TEXs could facilitate ccRCC drug resistance via 
enhancement of these signal pathways is still limited. Here, we 
propose that TEXs facilitate ccRCC to resist drug therapy via 
mTOR-ERK-STAT-NF-κB signaling pathway.

Methods

Samples collect

All tissue samples were collected from ccRCC patients. The 
control para-carcinoma tissues were gotten from cancer site 
that more than 2 centimeters away from the same patients. 

Reagents

All antibodies were purchased from Cell Signaling 
Technology (Danvers, USA), Abcam (Cambridge, USA) 
and Santa Cruz Biotechnology (Santa Cruz, USA). VDAC1 
(20B12AF2) (Cat. ab14734) was purchased from Abcam. 
STAT3 (F-2) (Cat. sc-8019), p-STAT3 antibody (Tyr 
705) (Cat. sc-7993), ALIX (3A9) (Cat. Sc-53538), and 
CD63 (H193) (Cat. Sc-15363) were purchased from Santa 
Cruz Biotechnology. Phospho-p44/42 MAPK (ERK1/2) 
(Thr202/Tyr204) (D13.14.4E) XP® Rabbit mAb (Cat. 
4370), p44/42 MAPK (ERK1/2) (137F5) Rabbit mAb (Cat. 
4695), Phospho-GSK-3β (Ser9) (D85E12) XP® Rabbit 
mAb (Cat. 5558), GSK-3β (D5C5Z) XP® Rabbit mAb (Cat. 
12455), Phospho-NF-κB p65 (Ser536) (93H1) Rabbit mAb 
(Cat. 3033S), NF-κB p65 (D14E12) XP® Rabbit mAb (Cat. 
8242S), phospho-IκBα (Ser32) (14D4) Rabbit mAb (Cat. 

2859S), IκBα antibody (Cat. 29242S), phospho-mTOR 
(Ser2448) antibody (Cat. 2971S), mTOR antibody (Cat. 
2972S) were all purchased from CST.

Cell culture

HK-2 cells from normal human kidney tissue-were used 
as the control for the production of exosomes. 769-
P and ACHN cells are epithelial cells, from renal cell 
adenocarcinoma. 769-P cells were used to produce TEXs. 
The growth of ACHN cells was inhibited by human IFN, 
and are suitable for antiproliferative studies. All cell lines 
were provided by Dr. Qianqian Shi (The Third Affiliated 
Hospital of Soochow University). HK-2, 769-P, and ACHN 
cells were cultured in RMPI 1640 medium (Hyclone, 
GE Lifesciences, USA) with 10% fetal calf serum (FBS) 
(PAN, Germany) and 100 U/mL Penicillin and 100 μg/mL 
Streptomycin (Beyotime, China).

Cell proliferation assay

ACHN cells were passaged into 96-well plate with the 
concentration of 10,000/mL. Cells were treated with 5 μM 
INFα, 5 μM BP-1-102, 2.5 μM rapamycin, TEXs, INFα + 
TEXs, BP-1-102 + TEXs, and rapamycin + TEXs for 48 h, 
respectively. Then detected cell viability follow the CCK8 
kit (CK04, Dojindo, Japan) protocol.

RNA extraction

Total RNA was extracted from tissue using a kit (R0027, 
Beyotime, China). The RNA concentration was measured 
by NanoDrop Lite (Thermo Fisher Scientific, USA), before 
reverse transcription.

Real-time PCR

c D N A  w a s  g e n e r a t e d  f r o m  R N A ,  f o l l o w e d  t h e 
PrimeScriptTM RT reagent Kit (Perfect Real Time) (Cat. 
RR037A, Takara, Japan) protocol. Real-time PCR primers 
are listed in Table 1.

Exosomes exclusion and exosomes isolation

In order to starve exosomes from fetal bovine serum (FBS), 
exosomes were depleted FBS via ultracentrifuge at least 16 h 
at 100,000 g at 4 ℃. Exosomes were isolated from cultured 
supernatant of 769-P and HK-2 cells, the steps as follows: 
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Table 1 Primers of real-time PCR

Name of primer Sequence from 5' to 3'

F-ALIX GCCAGAGAACCTAGTGCTCCTT

R-ALIX GGCTTAGTAGGCGGCATGGT

F-CD63 GCGGTGGAAGGAGGAATGA

R-CD63 AGAGACAGAAAGATGGCAAACG

F-RAB27A CCTCAATGTCAGAAACTGGATAAG

R-RAB27A AGTGCTATGGCTTCCTCCTC

F-EXOC6B GCTGTGTCTTCCAGTCCTAGAGAT

R-EXOC6B TAGTGGCTTACTTGAGGCAGGTAG

F-STAT3 GGAGAAGGACATCAGCGGTAAGA

R-STAT3 TAGACCAGTGGAGACACCAGGATA

F-STAT5A GCTTGTGTTCCAGGTGAAGACTC

R-STAT5A GTGGCTGCTGCTGTTGTTGAA

F-SIRT2 TCAAGCCAACCATCTGTCACTACT

R-SIRT2 CCTCCACCAAGTCCTCCTGTTC

F-LOXL3 GGCCCGTGTCCGTCTAAAG

R-LOXL3 TCCAGAGCAGCGAACTTCAC

F-ACTIN TCCCTGGAGAAGAGCTACG

R-ACTIN GTAGTTTCGTGGATGCCACA

F-HGS CTCCTGTTGGAGACAGATTGGG

R-HGS GTGTGGGTTCTTGTCGTTGAC

F-TSG101 ATGGCTACTGGACACATACCC

R-TSG101 GCGGATAGGATGCCGAAATAG

F-SNF8 AGCCCAGATGTCAAAGCAGTT

R-SNF8 CACGGTGTGATCCATATTGAGC

F-CHMP4A GGGACCAAGAATAAGAGAGCTGC

R-CHMP4A TGAAACTCCAGGGTGGATAATGT

F-CHMP4B AGAAGCACGGCACCAAAAAC

R-CHMP4B GCTGGAACTCGATGGTTGATAAT

F-CHMP4C ACTCAGATTGATGGCACACTTTC

R-CHMP4C GCTGCAAAGCCCATGTTCC

F-VPS4A CCACGCTATCAAGTATGAGGC

R-VPS4A CCGTGTTTCTCTTTGCTTCGTA

F-VTA1 CTCCCCGCACAGTTCAAGAG

R-VTA1 AACGACAGTAATAAGCCACCAC

F-Syntenin CTGCTCCTATCCCTCACGATG

R-Syntenin GGCCACATTTGCACGTATTTCT

Table 1 (continued)

Table 1 (continued)

Name of primer Sequence from 5' to 3'

F-Syndecan ACGGCTATTCCCACGTCTC

R-Syndecan TCTGGCAGGACTACAGCCTC

F-USP8 AAGGAGCAATCACAGCAAAGG

R-USP8 CTGCATTCTTCGAGCATCCATTA

F-STAMBP AGCTGGGTAGTGCGGTAGAG

R-STAMBP TGCCATTCGGATAATCTCAACTC

F-ATP6V1H GGCGCCTCTGTCATTCTACT

R-ATP6V1H CCAAGTAGGCGTCTCCTGTC

F-MCOLN1 GCTGTGACATTCCGGGAAGA

R-MCOLN2 ACCACGGACATACGCATACC

F-TFEB AGAGAATGATGCCTCCGCAC

R-TFEB ATGCGCAACCCTATGCGT

centrifugation at 300 g for 10 min at 4 ℃ to exclude debris 
and dead cells, then transferred supernatant to a new tube, 
centrifuged at 2,000 g for 10 min at 4 ℃ to exclude some 
large particles and debris, after that, transferred supernatant 
to a new tube, centrifuged at 100,000 g for at least  
70 min to precipitate exosomes. Discarded supernatants 
and resuspended sediment with pre-chilled PBS and spun 
down at 100,000 g for at least 70 min at 4 ℃. Finally, these 
were resuspended with 50 μL PBS to obtain pure exosomes. 
Exosomes were stored at −20 ℃.

Nanoparticle tracking analysis (NTA) of exosomes

NTA is one of the classical and convenient methods to 
analyze the morphological features of exosomes, which 
has been widely used in exosomes analysis (19). Isolated 
exosomes were analyzed via NanoSight NS300 (Malvern, 
England) after diluted 1,000 to 5,000 times. 

Western blot

Cells were seeded a day before treatment. By the 60–80% 
confluence, the medium was replaced with RMPI containing 
2% FBS, followed by treatment with IFNα (Cat. 11200-2, 
R&D, USA), STAT3 inhibitor 4-(N-(4-Cyclohexylbenzyl)-
2-(2,3,4,5,6-pentafluoro-N-methylphenylsulfonamido)
acetamido)-2-hydroxybenzoic acid (BP-1-102) (Cat. HY-
100493, MCE, USA), mTOR inhibitor rapamycin (Cat. HY-
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10219, MCE, USA), IFNα and TEXs, BP-1-102 and TEXs, 
rapamycin and TEXs for 48 h, respectively. Then harvested 
cells, whole cell lysate (WCL) was analyzed via Western blot.

Statistical analysis

All experiments were repeated triple minimum. Data was 
expressed mean ± standard error of the mean (SEM) and 
analyzed via Prism GraphPad 7.0. P value less than 0.05 was 
rendered statistically significant. All data was analyzed by 
Student’s t-test or one-way ANOVA.

Results

TEXs secretion was in a high level in renal cancer cells

To investigate the exosomal secretion in renal cancer and 
normal cells, we isolated exosomes from the renal cancer cells 
769-P and compared them to the normal renal cell line HK-2.  
From the results, renal cancer cells’ exosome secretion was 
higher than normal cells, the mean number of exosomes 
in HK-2 and 769-P cells were 6.2×1011/mL, 8.2×1011/mL, 
respectively (Figure 1A,B), meaning there were 32.3% more 
exosomes secreted by the cancerous cell line. Interesting, 
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no difference in exosome size (Figure 1A,C) was found 
as the peak analysis size of HK-2-derived exosomes and 
769-P-derived exosomes were 118.7 nm and 114.4 nm, 
respectively. 

Exosome biogenesis and transportation mRNA expression 
upregulated in ccRCC tissue

To assess the biogenesis of exosomes, ALIX, CD63, and 
RAB27A mRNA were analyzed via real-time PCR. Data 

indicated that all mRNA expression in ccRCC tissues were 
upregulated (Figure 2A,B,C). EXOC6B, which is involved 
in vesicle transportation, was also upregulated in cancer 
tissues (Figure 2D). Next, we wanted to confirm which 
steps occurred from exosome biogenesis to release. We 
selected genes of endosomal sorting complexes required for 
transport (ESCRT), which is the key step of biogenesis of 
exosomes and lysosome and ubiquitination related genes: 
VPS4A, CHMP4A/B/C, SYNTENIN, TSG101, HGS, 
SYNDECAN, MCOLN2, ATP6VH1, USP8, TFEB, VTA1, 
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STAMBP, SNF8. Our results indicated that ESCRT-0, 
ESCRT-I, ESCRT-III, and VPS4 complex are upregulated 
except for ESCRT-II (SNF8) while no difference detected 
in lysosome and ubiquitination genes (Figure 2E).

Gene expression involved in renal cancer development 

Then we investigated tumor related gene expression. 
Results showed that STAT3 mRNA was upregulated in 
tumor tissues (Figure 3A), which is in accordance with 
previous research indicating the oncogenic role of STAT3 
(20). STAT5A, which belongs to the same family of STAT3, 
was also upregulated in cancer tissues (Figure 3B). Other 
tumor related genes like SIRT2 also had the similar result 
as STAT3 (Figure 3C). While LOXL3, which inhibits the 
activation of STAT3 as we reported (21), was downregulated 
(Figure 3D). These results suggest that exosomes suppress 
anti-tumor related gene expression while increase tumor 
enhance gene expression.

TEXs promoted tumor cells resistant to antitumor drug

Next, to assess TEXs’ function, ACHN cells treated with 
mTOR inhibitor rapamycin, STAT3 inhibitor BP-1-102, 
or IFNα or co-treated with mTOR inhibitor rapamycin 
and TEXs, STAT3 inhibitor BP-1-102 and TEXs, or IFNα 
and TEXs, respectively. After ACHN cells were treated 
with IFNα, BP-1-102, or rapamycin for 48 h, all groups’ 
viability declined. This effect was elevated if TEXs were 
added into the supernatant. Studies also showed that TEXs 
alleviated the death of renal cells (Figure 4A,B,C). These 

results suggest that TEXs maintain tumor cells survival and 
resistant to drug treatment.

TEXs enhanced mTOR-ERK1/2-STAT-NF-κB signaling 

To investigate the mechanisms that TEXs maintained 
tumor cells’ resistant to antitumor drug, exosomes were 
confirmed via marker CD63 and ALIX, also confirmed by a 
mitochondrial marker VDAC1, which was rendered as the 
negative marker (Figure 5A). Western blot results showed 
TEXs enhanced STAT3 Y705 phosphorylation (Figure 5B), 
ERK1/2 phosphorylation (Figure 5C), p65 phosphorylation 
(Figure 5D), mTOR S2448 phosphorylation (Figure 5D). 
These results revealed that TEXs facilitated tumor cells 
escape from drug therapy through mTOR-ERK1/2-STAT-
NF-κB signal pathway.

Discussion

Higher concentration of exosomes in tumor patients have 
been reported previously (22), and our results provide 
evidence that renal tumor cells release more exosomes 
compared to normal renal cells in vitro. 

ESCRT, which contains ESCRT-0, ESCRT-I, ESCRT-
II, ESCRT-III, and VPS4 complex (23), is the crucial first 
step in the formation of multivesicular bodies (MVBs) which 
are somewhat precursors to exosomes (24). CD63, ALIX 
and RAB27A are the common markers of the formation 
of exosomes (25). We found the alleviation of exosomes, 
and then we confirmed the upregulation of ESCRT-0, 
ESCRT-I, ESCRT-III, and VPS4 complex except for 
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ESCRT-II (SNF8). No obvious difference of lysosome and 
ubiquitination, which involved in degradation of exosomes.

STAT3 was discovered as being important in the 
regulation of protein utilization in cancer tissues, and 
as an oncogene (26). Our previous results proved that 
lysyl oxidase like 3 (Loxl3) negatively regulates STAT3 
and affects the proliferation of cells (21). Our results are 
consistent with previous results that STAT3 is activated in 
tumor cells (20) as Loxl3 expression is downregulated. The 
expression of STAT5 and SIRT2, which are related to the 
proliferation of cells, are upregulated, meaning the proteins 
involved in enhancing proliferation are upregulated 
while LOXL3, which suppressed the proliferation, is 
downregulated.

TEXs act as an important mediator that assist tumor cells 
survival (27). Our results confirmed that TEXs contribute 
to the proliferation. But more studies need to be done on 
detailed components which play the pivotal role in the 
whole physiological process.

Finally, we found the mechanism of drug resistance in 
renal cancer occurring via mTOR-ERK-STAT-NF-κB 
signaling pathways. Previous results proved the importance 

of mTOR signal pathway, ERK signal pathway, STAT 
signal pathway, and NF-κB pathway (28-30), but lacked 
the documents of TEXs. Our results provide an insight of 
TEXs on ccRCC immune escape.

TEXs have a huge prospect in future diagnosis and 
therapy because of the detection kit had been using in 
clinical diagnoses. Glypican-1, which is component of 
exosomes, could be used as an early marker of pancreatic 
cancer (31). We still must use conventional methods to 
isolate exosomes from serum, supernatant, urine, and 
other fluids so far. A variety of unknown particles, some 
lipid particles, like low density lipoprotein, will still cause 
interference with these assays. We have been seeking an 
advanced approach to detect exosomes with high sensitivity 
and specificity. In renal carcinoma, miRNA might be good 
markers for future diagnose (32). If we could confirm 
ideal markers of exosomes secretion, which can be isolated 
from urine, and can be used in diagnosis. However, the 
mechanism of exosomes secretion to outer cells, which 
would be critical to find a specific target that regulates 
exosomes biogenesis and transportation and release, is still 
needs to be uncovered. We did not detect if there are any 
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Figure 5 TEXs maintain renal carcinoma cells drug resistance via mTOR-ERK-STAT-NF-κB signal pathways. (A) Exosome detection. 
Both CD63 and ALIX are markers of exosome, VDAC1 is marker of mitochondrial. (B) ACHN cells were treated with PBS, 5 μM IFNα, 
10 μg/mL 769-P exosomes, and 5 μM IFNα + 10 μg/mL 769-P exosomes, respectively. (C) ACHN cells were treated with PBS, 5 μM BP-
1-102, 10 μg/mL 769-P exosomes, and 5 μM BP-1-102 + 10 μg/mL 769-P exosomes, respectively. (D) ACHN cells were treated with PBS, 
2.5 μM rapamycin, 10 μg/mL 769-P exosomes, and 2.5 μM rapamycin + 10 μg/mL 769-P exosomes, respectively. All statistical data were 
expressed with mean ± SEM. Data were analyzed via Student’s t-test or one-way ANOVA, p value less than 0.05 was considered significant. *, 
P<0.05; ***, P<0.001, all compared with control group. TEXs, tumor derived exosomes; SEM, standard error of the mean.

proteins, DNA, RNA or other substrates in exosomes which 
play a key role in metabolism process alone or synergistic. 
So, specific components still need to be elucidated.

Conclusions

From this research, we proposed a hypothesis and 
documented that TEXs assist tumor cells to escape from 
immune killing and keep from drug damage via mTOR-
ERK-STAT-NF-κB pathway. In the future, exosomes 
could be used as a potential target and/or vector for tumor 
therapy.
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