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Introduction

Lung cancer is the most commonly diagnosed cancer 
and leading cause of cancer mortality worldwide, which 
accounts for 11.6% of total cases and 18.4% of the total 

deaths (1). Based on histological classification, lung cancer 

is categorized into non-small cell lung cancer (NSCLC, 

~85%) and small-cell lung cancer (SCLC, ~15%), the 

former group is further classified into three common 
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subtypes, large-cell carcinoma, squamous cell carcinoma, 
and adenocarcinoma (2,3). Despite progresses achieved 
in therapies including surgical resection, chemotherapy, 
radiotherapy, and immunotherapy for NSCLC in recent 
years, the 5-year survival rate is still low and only 5% (4).  
Lack of specific molecular biomarker leads to many 
NSCLC patients were diagnosed at advanced stage, 
resulting in no long-term survival (5). Encouragingly, with 
the development of oncogenetics and molecular etiology 
of lung cancer, great progress has been made in targeted 
cancer therapy. For example, tyrosine kinase inhibitor 
(TKI), such as gefitinib and erlotinib, can block the activity 
of epidermal growth factor receptor (EGFR) reversibly, 
suppress cell proliferation and transformation, thus improve 
response rate and prolong survival (6). However, the clinical 
benefits of these targeted therapies are only restricted to 
a cohort of NSCLC patients with corresponding targets. 
Therefore, it is important to further reveal the molecular 
mechanisms involved in the initiation and progression of 
NSCLC and to identify the alternated key genes to develop 
more effective therapies for lung cancer. 

Gene chip is a powerful and reliable technologies that 
can quickly yield quantitative differentially expressed genes 
(DEGs) and expression profiles by it (7). To date, a large 
number of microarray data could be explored from the 
Gene Expression Omnibus public database. With the rapid 
development of high-throughput sequencing, bioinformatics 
analysis has been applied in mining the pathophysiological 
mechanism of different cancers (8-10). In this study, we 
downloaded 3 NSCLC related mRNA datasets GSE19188, 
GSE27262, GSE118370 from GEO database to find DEGs, 
Subsequently, hub genes were found to be associated with 
survival and further validated when lung tissues compared 
with adjacent normal tissues. In conclusion, our study can 
further understand the molecular mechanism of NSCLC 
and provides potential useful biomarkers for diagnosis, and 
targeted therapy of NSCLC patients.

Methods

Microarray data

The microarray data GSE19188, GSE27262, GSE118370 
used in this study were downloaded from the Gene 
Expression Omnibus database at NCBI (www.ncbi.nlm.
nih.gov/geo/) (11), which is a openly public database. 
They were all based on the platform of the GPL570 [HG-
U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 

Array, which consisted of 91 lung cancer and 65 adjacent 
normal lung tissue, 25 lung cancer and 25 adjacent paired 
normal lung tissue, 6 lung adenocarcinoma tissues and 6 
paired normal lung tissues, respectively. Data processing 
and identification of DEGs. The DEGs between NSCLC 
specimen and normal lung specimen were identified 
via GEO2R, which is an online tool and can be applied 
to screen DEGs. |logFC| >2 and adjust P<0.05 were 
considered as cut-off value. Venn software was applied to 
detect DEGs among the 3 datasets.

Gene ontology (GO) and pathway enrichment analysis  
of DEGs

GO and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (12) annotations analysis of DEGs gene were 
performed via the Database for Annotation, Visualization 
and Integrated Discovery 6.8 (DAVID6.8) (https://david.
ncifcrf.gov/) (13). GO analysis is a commonly useful tool 
to investigate unique biological properties of DEGs that 
were involved, including biological processes (BP), cellular 
components (CC) and molecular function (MF). KEGG is 
an online database to integrate protein interaction network 
information and deal with disease, metabolism, biological 
pathways, and drug research. DAVID, as a comprehensive 
set of functional annotation tool, can integrate public 
bioinformatics resources and perform biological analyses 
of genes by clustering algorithm. P<0.05 was considered 
significant 

Protein-protein interaction (PPI) network and module 
analysis

Search Tool for the Retrieval of Interacting Genes 
(STRING) database (https://string-db.org) (14) was 
applied to download the interaction information of human 
proteins and construct PPI network, then Cytoscape (www.
cytoscape.org) (15) was used to visualize PPI network 
with cut-off criteria of combined score >0.4. In addition, 
The PPI network modules was analyzed via the Molecular 
Complex Detection (MCODE) app in Cytoscape based on 
topology (degree cutoff =2, max. Depth =100, k-core =2, 
and node score cutoff =0.2).

Survival analysis of crucial genes

Kaplan–Meier plotter (http://kmplot.com/) (16) is a 
commonly used web tool that is capable to assess the 
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prognostic values of genes in 21 cancer patients, of which 
the largest dataset including breast, ovarian, lung, and 
gastric cancer based on GEO, EGA, and TCGA. According 
to the level of gene expression (high and low), the NSCLC 
patients were divided into two groups. The HR with 95% 
confidence intervals and log rank P value were computed 
and displayed on each plot.

RNA sequencing expression of hub gene in GEPIA

The Gene Expression Profiling Interactive Analysis 
(GEPIA) is online database that can analyze RNA 
sequencing expression. To further validate these significantly 
correlated genes, the GEPIA was used.

Results

Identification of DEGs in lung cancer

We used GEO2R online tool to extract 501, 474, 749 DEGs 
in GSE19188, GSE27262, GSE118370, of which 357, 329, 
359 downregulated and 144, 145, 390 upregulated DEGs, 
respectively. Then, Veen diagram software was applied 
to identify the most reliable DEGs among 3 datasets. As 
shown in Figure 1 and Table 1, in total, 149 DEGs that met 
the cut-off criteria were obtained, including 127 down-
regulated and 22 were up-regulated. 

GO and KEGG pathway analysis of DEGs

To further identify the potential biological functions of 
these 149 DEGs, DAVID online software was used to 
analyze GO categories. The results of GO functional 
enrichment analysis, as shown in Table 2, indicated that, as 
for BP, upregulated DEGs were significantly enriched in 
collagen catabolic process, sensory perception of sound, 
G2M transition of mitotic cell cycle, cell division, inner ear 
morphogenesis, and downregulated DEGs in angiogenesis, 
cell adhesion, vasculogenesis, single organismal cell-
cell adhesion, response to hypoxia; for cell composition 
(CC) part, upregulated DEGs were particularly involved 
in centrosome, proteinaceous extracellular matrix, 
collagen trimer, spindle pole and downregulated genes 
in membrane raft, proteinaceous extracellular matrix, 
cell surface, plasma membrane, integral component of 
plasma membrane, external side of plasma membrane; in 
the MF section, the upregulated DEGs participated in 
extracellular matrix binding, serine-type endopeptidase 
activity and downregulated genes in heparin binding, 
receptor activity, transformation growth factor beta binding, 
peroxidase activity. All terms are closely associated with 
the tumorigenesis and development. On the other hand, 
KEGG pathway enrichment analysis was performed to 
analyze the biological functions of these genes. The most 
enriched KEGG pathways were as follows: ECM–receptor 

Figure 1 A total of 149 common differentially expressed genes in 3 datasets (GSE19188, GSE27260 and GSE118370) via Venn diagrams 
software. Different color meant different datasets. (A) Twenty-two differentially expressed genes were up-regulated in three datasets (logFC 
>0); (B) 127 differentially expressed genes were down-regulated in three datasets (logFC <0).
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interaction, Vascular smooth muscle contraction, PPAR 
signaling pathway, Adrenergic signaling in cardiomyocytes, 
cell adhesion molecules (CAMs) and focal adhesion  
(Table 3).

Construction PPI network and modular analysis

To further predict the interaction of the DEGs at the 
protein level, the PPI network was constructed, in which 
102 DEGs were imported into and 47 were not contained 
totally. The constructed PPI network contained 204 
interaction pairs. Subsequently, cytotype MCODE app was 
employed to identify modules. As displayed in Figure 2,  
the top 1 significant module included 13 central nodes 
among the 102 nodes. Among 13 central nodes, 7 including 
CCNB1, AURKA, HMMR, SPP1, NUF2, NEK2, CENPF 
were upregulated and 6 including LYVE1, ROBO4, PTPRB, 
VWF, TIE1, ANGPT1 were downregulated.

Analysis of core genes by the Kaplan Meier plotter and 
GEPIA

In an attempt to gain insight into association between hub 
genes and NSCLC patients, Kaplan Meier plotter was 
utilized to predict the prognostic value of 13 core genes 
survival data. The result revealed that 11 DEGs had a 
significant survival while 2 had no significance (P<0.05, 
Table 4 & Figure 3). ROBO4 with low expression was 
associated with better overall survival for NSCLC patients, 
as well as PTPRB, VWF, ANGPT1 (P<0.05). Additionally, 
high expression of CCNB1 was associated with poorer 
overall survival, as well as CCNB1, AURKA, HMMR, SPP1, 

NUF2, NEK2, CENPF (P<0.05). Moreover, to further verify 
the expression of these DEGs, GEPIA was employed to 
dig up the 11 gene expression level between lung cancer 
and normal people. As graphed in Table 5 & Figure 4, 
notably, the results were in line with the survival analysis 
above, which imply that the expression levels of the 11 hub 
genes are particularly associated with clinical prognosis 
of NSCLC patients and they may play vital roles in the 
progression of NSCLC.

KEGG pathway enrichment of 11 genes reanalysis

KEGG pathway was re-analyzed to investigate the possible 
pathway of 11 genes. Enrichment analysis showed that the 
module genes were mainly associated with ECM-receptor 
interaction and PI3K-Akt signaling pathway (Table 6 & 
Figure 5).

Discussion

At present, the diagnosis and treatment of NSCLC is still far 
from satisfactory, and the number of this case is still rising 
year by year. It is necessary to investigate the pathogenesis 
and biomarker of NSCLC to provide effective treatment. 
Great progress has been made on the mechanism of 
initiation and development of NSCLC. Many experiments 
including vitro tumor cell lines, animal tumor models, and 
patients’ tumor model have been done, however, NSCLC 
demands more comprehensive analysis because the progress 
of lung cancer is a multi-stage and multi-cause process. 
Fortunately, with the development of human genome 
sequencing, the high throughput and associated tumor 

Table 1 All 149 commonly differentially expressed genes were identified from three profile datasets, including 127 downregulated genes and 22 
up-regulated genes in the lung tissues compared to normal tissues

DEGs Gene names

Up-
regulated

KIF26B, CCNB1, HMGB3, CD24, CXCL13, GJB2, AURKA, TFAP2A, FERMT1, HMMR, TMPRSS4, HS6ST2, SPP1, SIX1, 
COL10A1, COL11A1, UGT8, NUF2, MMP1, NEK2, MMP12, CENPF

Down-
regulated

HBA2///HBA1, RTKN2, EMCN, SOX7, ADARB1, PPP1R14A, WISP2, MFAP4, KCNT2, ERG, SLC6A4, PECAM1, KCNK3, 
SYNPO2, GIMAP8, OGN, SCARA5, BTNL9, PCAT19, IGSF10, ACVRL1, SCGB1A1, CDO1, CA4, SDPR, TEK, CLIC3, GRK5, 
DACH1, VGLL3, GUCY1A2, PALM2-AKAP2///AKAP2, STXBP6, S1PR1, EMP2, LYVE1, ADAMTS8, GDF10, LEPROT///
LEPR, BCHE, SPOCK2, AKAP12, CD36, PDE5A, LDB2, ROBO4, SPTBN1, CALCRL, CAV1, PPBP, JAM2, PTPRB, QKI, FOXF1, 
ACADL, ANKRD29, AQP4, PIR-FIGF///FIGF, ITGA8, MT1M, TNNC1, IL1RL1, FAT3, MCEMP1, HBB, FHL1, RHOJ, THBD, 
KLF4, SCN7A, FMO2, ABCA8, MYZAP, AOC3, SFTPC, ADRB1, SEMA3G, TCF21, TGFBR3, HHIP, ADH1B, ARHGEF26, 
ARHGAP6, LINC00968, ASPA, CCL15-CCL14///CCL14, FABP4, EDNRB, SCN4B, FCN3, MYCT1, KANK3, STX11, LINC00312, 
CCDC85A, FAM107A, CCBE1, PGM5, GPX3, AGER, RGCC, VWF, MARCO, SEMA5A, ABI3BP, CD93, TIE1, KIAA1462, VIPR1, 
AGTR1, EPAS1, RAMP3, CLIC5, SLIT2, FHL5, ADAMTSL3, CLDN18, C2orf40, CDH5, PDK4, GPM6A, COL6A6, ANGPT1, 
SMAD6, TMEM100, DUOX1, AFF3
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database developed and were more available to get. The 
integration of data by bioinformatics analyses from multiple 
datasets has become a vital source of data for studies of lung 
cancer. For example, using GSE19804 dataset, Yang et al. 
identified hub genes including UBE2C, DLGAP5, TPX2, 
CCNB2, BIRC5, KIF20A, TOP2A, GNG11, and ANXA1 
associated with prognosis in nonsmoking females with 
NSCLC patients (17). Similarly, using 4 dataset GSE21933, 

GSE33532, GSE44077 and GSE74706, CCNB1, CCNA2, 
CEP55, PBK and HMMR was identified and associated with 
poorer survival (18).

In the current study, we attempted to identify tumor 
related genes that contribute to NSCLC overall survival 
via series of database. We used bioinformatical methods 
based on 3 profile datasets (GSE19188, GSE27262 and 
GSE118370). One hundred and twenty-two lung cancer 

Table 2 Gene ontology analysis of differentially expressed genes in lung cancer, including biological processes, cellular components and molecular 
function

Expression Category Term Count P value FDR

Upregulated GOTERM_BP_DIRECT GO:0030574~collagen catabolic process 4 6.69E-05 0.088526

GOTERM_BP_DIRECT GO:0007605~sensory perception of sound 4 5.82E-04 0.768065

GOTERM_BP_DIRECT GO:0000086~G2/M transition of mitotic cell cycle 4 6.34E-04 0.837064

GOTERM_BP_DIRECT GO:0051301~cell division 5 8.39E-04 1.104883

GOTERM_BP_DIRECT GO:0042472~inner ear morphogenesis 3 0.001902 2.490103

GOTERM_CC_DIRECT GO:0005813~centrosome 5 0.001285 1.321892

GOTERM_CC_DIRECT GO:0005578~proteinaceous extracellular matrix 4 0.003438 3.501323

GOTERM_CC_DIRECT GO:0005581~collagen trimer 3 0.004973 5.029117

GOTERM_CC_DIRECT GO:0000922~spindle pole 3 0.006912 6.926107

GOTERM_CC_DIRECT GO:0045120~pronucleus 2 0.00804 8.014669

GOTERM_MF_DIRECT GO:0050840~extracellular matrix binding 2 0.030374 27.11998

GOTERM_MF_DIRECT GO:0004252~serine-type endopeptidase activity 3 0.036114 31.42547

Down regulated GOTERM_BP_DIRECT GO:0001525~angiogenesis 13 2.78E-08 4.38E-05

GOTERM_BP_DIRECT GO:0007155~cell adhesion 15 1.99E-06 0.003144

GOTERM_BP_DIRECT GO:0001570~vasculogenesis 5 5.10E-04 0.800955

GOTERM_BP_DIRECT GO:0016337~single organismal cell-cell adhesion 6 5.52E-04 0.866402

GOTERM_BP_DIRECT GO:0001666~response to hypoxia 7 9.87E-04 1.544895

GOTERM_CC_DIRECT GO:0045121~membrane raft 10 6.32E-06 0.007526

GOTERM_CC_DIRECT GO:0005578~proteinaceous extracellular matrix 11 7.68E-06 0.009144

GOTERM_CC_DIRECT GO:0009986~cell surface 15 8.11E-06 0.009649

GOTERM_CC_DIRECT GO:0005886~plasma membrane 46 4.84E-05 0.057592

GOTERM_CC_DIRECT GO:0005887~integral component of plasma membrane 23 6.57E-05 0.078202

GOTERM_CC_DIRECT GO:0009897~external side of plasma membrane 8 4.07E-04 0.483305

GOTERM_MF_DIRECT GO:0008201~heparin binding 7 5.16E-04 0.682835

GOTERM_MF_DIRECT GO:0004872~receptor activity 7 0.002471 3.232508

GOTERM_MF_DIRECT GO:0050431~transforming growth factor beta binding 3 0.004425 5.719841

GOTERM_MF_DIRECT GO:0004601~peroxidase activity 3 0.008313 10.493
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specimens and 96 normal specimens were enrolled in 
this research. In particular, we were able to validate 
11 genes that significantly associated with prognosis. 
First, we extracted 149 common DEGs yielded from 
3 datasets (|logFC| >2 and adjust P value <0.05), the 
vast majority were down-regulated, of which including 
127 downregulated and 22 upregulated genes. Next, we 

Table 4 The prognostic information of the 11 key differentially 
expressed genes

Category Genes

Genes with significantly better 
survival (P<0.05)

ROBO4, PTPRB, VWF, 
ANGPT1

Genes with significantly worse 
survival (P<0.05)

CCNB1, AURKA, HMMR, 
SPP1, NUF2, NEK2, CENPF

Table 3 Kyoto Encyclopedia of Gene and Genome pathway analysis of differentially expressed genes in lung cancer

Pathway ID Name Count P value Genes FDR

hsa04512 ECM-receptor interaction 7 1.70E-04 VWF, CD36, COL6A6, ITGA8, COL11A1, SPP1, 
HMMR

0.189451

hsa04270 Vascular smooth muscle contraction 5 0.025531 RAMP3, AGTR1, GUCY1A2, CALCRL, PPP1R14A 25.03342

hsa03320 PPAR signaling pathway 4 0.026133 CD36, FABP4, ACADL, MMP1 25.54754

hsa04261 Adrenergic signaling in 
cardiomyocytes

5 0.042961 AGTR1, ADRB1, TNNC1, SCN4B, SCN7A 38.68835

hsa04514 Cell adhesion molecules (CAMs) 5 0.046888 CLDN18, ITGA8, PECAM1, JAM2, CDH5 41.43357

hsa04510 Focal adhesion 6 0.047002 VWF, CAV1, COL6A6, ITGA8, COL11A1, SPP1 41.51176

Figure 2 Protein-protein interaction network of common Differentially expressed genes constructed by Search Tool for the Retrieval of 
Interacting Genes online database and Module analysis. (A) Protein-protein interaction network of Differentially expressed genes. The ball 
represents gene; the line meant the interaction between genes. green meant down-regulated differentially expressed genes and red meant up-
regulated differentially expressed genes. (B) Module analysis though cytoscape software with degree cutoff =2, node score cutoff =0.2, k-core 
=2, and max. Depth =100.
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performed GO and KEGG pathway functional enrichment 
by DAVID online tool on these DEGs. By performing 
with GO enrichment analysis, the DEGs were mainly 
involved in angiogenesis, cell adhesion, vasculogenesis and 

collagen catabolic process, all these important biological 
progresses processes participated in the pathophysiological 
mechanism of NSCLC. Angiogenesis, one of hallmarks 
of cancer acquired during the multistep development 
of human tumor (19). A study showed that angiogenic 
switch is always activated and remains on, resulting in new 
vessels sprout from quiescent vasculature to help sustain 
neoplastic growths during tumor progression (20). As 
for GO cell component (CC), the DEGs were enrich in 
centrosome, proteinaceous extracellular matrix, plasma 
membrane, integral component of plasma membrane, cell 
surface, proteinaceous extracellular matrix and for MF, the 
DEGs were significantly involved in the heparin binding, 

Table 5 Further validation of 11 genes via Gene Expression 
Profiling Interactive Analysis

Category Genes

Genes with high expressed in 
LC (P<0.05)

ROBO4, PTPRB, VWF, ANGPT1

Genes with low expressed in 
LC (P<0.05)

CCNB1, AURKA, HMMR, SPP1, 
NUF2, NEK2, CENPF

Figure 3 The prognostic information of the 13 core genes. Kaplan-Meier survival curves were generated to identify the prognostic value 
and 11 of 13 genes had a significantly significance (P<0.05). (A–G) High expression genes with poorer prognosis; (H–K) low expression 
genes with better prognosis.
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extracellular matrix binding, serine-type endopeptidase 
activity. KEGG pathway enrichment analysis revealed 
that DEGs are mainly concentrated in the ECM-receptor 
interaction, Vascular smooth muscle contraction, PPAR 
signaling pathway. The pathways of ECM‑receptor 

interaction is important mediators of growth, proliferation, 
survival, angiogenesis and migration of cancer (21), 
consistent with the results obtained in this study. In 
addition, we constructed PPI modules and identified 13 
high interrelated nodes by mocode app. Subsequently, we 

Figure 4 Significantly expressed 11 genes in lung cancer patients compared to healthy people. Eleven genes with prognostic value were 
analyzed by Gene Expression Profiling Interactive Analysis website. All genes had significant expression level in lung cancer specimen 
compared to normal specimen (*P<0.05). (A–G) High expression genes when lung squamous cell carcinoma and lung adenocarcinoma 
compared with normal tissues. (H–K) Low expression genes when lung squamous cell carcinoma (LUSC) and lung adenocarcinoma 
compared with normal tissues.

Table 6 Reanalysis of 11 candidate genes via Kyoto Encyclopedia of Gene and Genome pathway enrichment

Pathway ID Name Count P value Genes FDR

cfa04512 ECM-receptor interaction 3 0.00238 VWF, SPP1, HMMR 1.67928

cfa04151 PI3K-Akt signaling pathway 3 0.03261 VWF, ANGPT1, SPP1 20.9804
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performed survival of 13 genes and identified 11 related 
gene that significantly correlated prognosis analysis in 
NSCLC patients. Of the 11 genes identified, 7 genes with 
high expression indicated worse survival, but other 6 genes 
with low expression indicated better survival. In validating 
these 11 genes, GEPIA was applied and all genes make 
sense when lung cancer samples compared with normal 
samples. Finally, we re-analyzed 11 genes via DAVID for 
KEGG enrichment and found that 3 genes (VWF, SPP1, 
and HMMR) enriched in ECM-receptor interaction and 
3 genes (VWF, ANGPT1, and SPP1) enriched in PI3K-
Akt signaling pathway had a significance (P<0.05). We are 
particularly interested in VWF and SPP1, because they are 

common genes in two pathways.
VWF, Von Willebrand factor, a large multimeric plasma 

glycoprotein originated from endothelial cells, platelets 
and megakaryocytes. It has been widely known as its 
function in haemostasis to enables capture of platelets at 
sites of endothelial damage (22,23), and the function of 
promoting angiogenesis (24). Recent advances revealed 
that GATA3 can induce VWF upregulation in the lung 
adenocarcinoma vasculature by binding to the +220 GATA 
binding motif on the human VWF promoter (25) and 
plasma VWF/ADAMTS-13 ratio may act as an independent 
predictive factor for mortality in patients with advanced  
NSCLC (26). Another study indicated that VWF with 

Figure 5 Re-analysis of 11 selected genes by Kyoto Encyclopedia of Gene and Genome pathway enrichment. Three genes (VWF, SPP1, and 
HMMR) were significantly enriched in the ECM-receptor interaction pathway. Three genes (VWF, ANGPT1, and SPP1) were significantly 
enriched in the PI3K-Akt signaling pathway.
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low expression in osteosarcoma tumors can potentially 
contribute to metastasis (27).

SPP1, secreted phosphoprotein 1, also called OPN. It is 
located on chromosome 4 in locus 4q13.22 and encoded by 
the human gene SPP1 (28) that include seven exons and can 
be alternatively spliced to produce different variants (29).  
It can be produced by osteoclasts, endothelial cells, 
epithelial cells, and immune cells to play a vital role in 
normal and disease BP, including bone remodeling, immune  
regulation (30) and cell adhesion (31). It can bind to 
integrins and CD44, resulting in inflammatory disorders, 
autoimmune diseases, and tumorigenesis (30). In non-small 
cell lung cancers (NSCLC), SPP1 induces VEGF expression 
and promotes tumor progression (12). Altogether, it can 
be a useful target and potential therapy target. Numerous 
studies have demonstrated that these two genes were 
related to distinct types of cancer, however, few papers have 
been studied in lung cancer. Also, CENPF, PTPRB, and 
NUF2 are rarely reported after we searched these genes in 
PubMed online website. Taken together, our study linked to 
NSCLC pathogenesis could improve the understanding of 
underlying molecular mechanisms of NSCLC and provide 
useful information for future study of new anticancer in 
lung cancer.

Conclusions 

We identified DEGs between lung cancer and normal 
tissues on the via bioinformatics analysis and the results 
revealed they may play crucial roles in the progression of 
lung cancer; however, Further experiments are needed to 
verify these predictions. Anyway, this study may provide 
some potential biomarkers and targets for NSCLC 
diagnosis and therapy.
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