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Introduction

Colorectal cancer (CRC), also known as bowel or colon 
cancer or rectal cancer, is an aggressive human tumor (1,2). 
According to the statistics, more than 51,020 people will die 
from this disease in 2019, accounting for about 8% of all 
cancer deaths. Moreover, it has been estimated that, as of 
January 1, 2019, more than 1.5 million people in the United 
States received a diagnosis of CRC, and 145,600 new cases 

are predicted to be diagnosed in 2019 (3,4). With the rise 
of the Human Development Index (HDI), the incidence 
of CRC has gradually increased worldwide. Consistently, 
the incidence and mortality of CRC in China have grown 
in the past decade (5). Therefore, understanding CRC 
carcinogenesis at the molecular level is a pivotal step for 
improving early diagnosis and prognosis, as well as for 
developing effective therapeutics.

Although transcriptionally inactive, noncoding RNAs 
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(ncRNAs) regulate the expression of target genes (6,7). 
Long noncoding RNAs (lncRNAs) are a class of ncRNAs 
with a length of >200 nucleotides, affecting many cellular 
processes. Recent studies demonstrated that many lncRNAs 
play an essential role in cancer pathogenesis, including 
tumor formation and progression (8). Unlike linear RNAs, 
circular RNAs (circRNAs) have a unique circular covalently 
bonded structure, which confers them a high resistance 
to exonucleases. Due to their conservation, abundance, 
and tissue specificity, accumulating evidence indicates that 
circRNAs may serve as specific molecular markers in multiple 
cancers, including gastric cancer, hepatocellular carcinoma, 
and lung cancer (9-11). MicroRNAs (miRNAs) are a variety 
of small ncRNA molecules ranging in size between 15 and 
21 nucleotides and exerting post-transcriptional regulation of 
gene expression and RNA silencing by binding to the 3'UTR 
regions of target genes. In the past few decades, significant 
achievements have been made about the correlations between 
miRNAs and cancers (12-14). A competitive endogenous RNA 
(ceRNA) hypothesis was first proposed by Salmena et al. to 
describe the interactions between different types of ncRNAs 
and postulated that such networks regulate the expression 
of downstream target genes in multiple malignancies (15). 
Numerous studies support this hypothesis, confirming the 
involvement of lncRNA-miRNA-messenger RNA (mRNA) 
and circRNA-miRNA-mRNA ceRNA networks in various 
cancers, including CRC (16-18). However, the mechanisms 
by which these networks may affect CRC progression and 
prognosis are as yet unclear.

In light of the ceRNA theory, we reconstructed a 
molecular network potentially implicated in CRC using 
online data from the National Center for Biotechnology 
Information Gene Expression Omnibus (NCBI-GEO), 
which contained 44 circRNAs, 2 lncRNAs, 5 miRNAs, 
and 36 mRNAs. Following this, based on the ceRNA 
network, we performed functional enrichment analysis 
and core gene speculation, for the further construction of 
a core gene-centered RNA interaction network. Indeed, 
several differentially expressed RNAs identified have been 
reported in CRC previously, but the majority have mainly 
focused on lncRNA or circRNA mediated networks. In our 
research, we considered the interaction between lncRNAs 
and circRNAs and constructed a multi-molecule co-
mediated ceRNA network. Besides, to specifically explore 
the molecular mechanisms associated with CRC in the 
Chinese population, only tumor specimens from Chinese 
patients were analyzed in all datasets. Our data may inspire 
new approaches to treatment and prevention.

Methods

Data source

Gene expression profiles of CRC patients and healthy 
individuals (GSE108153, GSE126093, GSE126094, 
GSE126092, and GSE41657) were obtained from NCBI-
GEO, a free database of microarray/gene profile and 
next-generation sequencing data. The GSE108153 and 
GSE126093 datasets contained miRNA microarray data of 21 
and 10 paired samples from patients with CRC and healthy 
individuals, respectively. GSE126094 contained circRNA 
microarray data of 10 paired samples from CRC patients 
and 10 healthy individuals. GSE126092 contained data of 10 
paired samples from CRC patients and 10 healthy individuals 
and was used to analyze the lncRNAs. Finally, mRNA 
profiles were analyzed in the GSE41657 dataset, comprising 
25 paired CRC patients and 12 healthy individuals.

Screening of DEmiRNAs, circRNAs, lncRNAs, and 
mRNAs

R software (version 3.5.2) was utilized to select DEmiRNAs 
from the GSE108153 and GSE126093 datasets separately. 
The two series of data were merged, and miRNAs with 
the same seed sequence and expression pattern were 
selected as co-expressed miRNAs. The R software was also 
used to identify DEcircRNAs, lncRNAs, and mRNAs in 
the GSE126094, GSE126092, and GSE41657 datasets, 
respectively. For all analyses, we applied a log2FC >2, and 
an adjusted P value <0.05 was the cut-off for statistical 
significance. Volcano maps were generated based on the 
DEcircRNAs, lncRNAs, and mRNAs using the ggplots 
packages in the R platform. 

Construction of the ceRNA network

The Starbase database (http://starbase.sysu.edu.cn/) was 
used to predict interactions between lncRNA/circRNA and 
miRNAs. Starbase is an open-source platform for studying 
miRNA-ncRNA or miRNA-mRNA interaction and contains 
gene expression data of 32 types of cancers from 10,882 
RNA-Seq and 10,546 miRNA-Seq datasets. Moreover, 
Starbase includes 10 different programs to predict miRNA 
targets (PITA, RNA22, miRmap, microT, miRanda, PicTar, 
TargetScan, AgoExpNum, CleaveExpNum, and Pan-Cancer) 
and was used to identify mRNA targets of the identified 
miRNAs. The genes that were recognized as targets of the 
selected miRNAs by more than five prediction programs 
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were considered for further analysis.

Functional enrichment analysis

The Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) is an online resource platform (available 
at https://david.ncifcrf.gov/), which allows for systematic 
and comprehensive analysis of large gene lists. To assess the 
functional enrichment of the DEmRNAs, GO terms, and 
KEGG pathways were analyzed using DAVID. P values 
<0.05 were considered indicative of statistically significant 
DEmRNA enrichment in KEGG pathways or GO terms.

Construction and analysis of a PPI network 

The STRING database (http://stringdb.org) was used to 
predict potential interactions between DEmRNAs. The 
results were visualized by Cytoscape 3.7.1. In addition, the 
CytoHubba tool was used to identify hub genes belonging 
to the obtained PPI network. Finally, we analyzed PPI 
subnetworks based on the identified hub-genes.

Data availability

The datasets analyzed during the current study are available 
in the Gene Expression Omnibus (GEO) repository, http://
www.ncbi.nlm.nih.gov/geo/.

Results

Differentially expressed ncRNAs in CRC

DEmiRNAs in CRC patients and paired healthy controls 

from all datasets were selected, using a P value <0.05 and 
a log2FC >2 as cut-off criteria. Eight and 103 DEmiRNAs 
were extracted from the GSE108153 and GSE126093 
microarray datasets, respectively. Five of these DEmiRNAs, 
3 up-regulated and 2 downregulated in CRC compared to 
healthy subjects, were common to both datasets (Figure 1).

In the GSE126094 dataset, 245 differentially expressed 
circRNAs (DEcircRNAs) were found, of which 237 
were up-regulated and 8 downregulated in CRC patients 
compared to healthy individuals. Then, GSE126092 
microarray data were used to identify differentially 
expressed lncRNAs (DElncRNAs). As a result, 555 up-
regulated and 1,111 downregulated lncRNAs were selected. 
Further, the GSE41657 microarray dataset was used to 
identify differentially expressed mRNAs (DEmRNAs), 
revealing 260 up-regulated and 674 downregulated mRNAs 
in CRC patients. The selected variations had a log2FC 
>2 and an adjusted P value <0.05 (Figure 2). At the same 
time, the differentially expressed RNAs were listed in 
supplementary (Figure S1).

Construction of a ceRNA regulatory network in CRC

To explore pathogenetically relevant interactions between 
DEcircRNAs, DElncRNAs, DEmiRNAs, and DEmRNAs, 
we constructed a lncRNA/circRNA-miRNA-mRNA 
ceRNA regulatory network for CRC. First, we predicted the 
interaction pairs between the five selected DEmiRNAs and 
the DEcircRNAs, lncRNAs, and mRNAs using the StarBase 
database. By merging the three datasets, 44 overlapping 
DEcircRNAs (43 up-regulated and 1 downregulated), 2 
overlapping DElncRNAs, and 36 overlapping DEmRNAs 
(13 up-regulated and 23 downregulated) were obtained 

GSE108153 GSE108153GSE126093 GSE126093

Figure 1 Identification of 5 differentially expressed microRNAs (DEmiRNAs) in common between two public microarray datasets (GSE108153 
and GSE126093). (A) Up-regulated miRNAs. (B) Down-regulated miRNAs. Color areas represent different datasets. The overlapping areas 
indicate frequent changes. Cut-off criteria for statistically significant variations were adjusted to P value <0.05 and log2FC >2. 

http://stringdb.org
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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Figure 2 Volcano plot of differentially expressed circRNAs (DEcircRNAs), lncRNAs (DElncRNAs), and mRNAs (DEmRNAs). Red spots 
represent up-regulated genes, and green spots represent down-regulated genes.

and imported into Cytoscape for analysis. The constructed 
network is shown in Figure 3.

Functional analysis of DEmRNAs 

To investigate the biological function of the 36 DEmRNAs, 
data were clustered by Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analyses using the DAVID software. P values <0.05 
were considered to be statistically significant (Figure 4). 
DEmRNAs were classified based on three functional 
criteria: biological process (BP), molecular function (MF), 
and cellular component (CC). According to BP ontology, 
DEmRNAs were mainly involved in the repression of 
transcription from the RNA polymerase II promoter. 
Based on CC ontology, DEmRNAs were mainly enriched 
in the nuclear compartment. According to MF ontology, 
DEmRNAs were enriched in sequence-specific DNA 
binding and RNA polymerase II core promoter proximal 
region sequence-specific binding. Furthermore, according 
to the KEGG pathway enrichment analysis, DEmRNAs 
were implicated in the oxytocin signaling pathway. 

Construction of a protein-protein interaction (PPI) 
network based on DEmRNAs

To discover the core molecules of cellular processing at 
the protein level, we used the Search Tool for the Retrieval 
of Interacting Genes (STRING), a database of known 
and predicted protein interactions, to identify functional 
PPIs based on the 36 DEmRNAs. A network consisting 

of 32 nodes and 76 edges, with an enrichment P value of 
1.3×10−6, was obtained. Proteins with essential roles in 
the network were identified based on the scores assigned 
by Cytoscape to the nodes and edges (https://cytoscape.
org/) (Figure 5). Both the size and color shade of nodes 
reflect the degree of centrality. In particular, the larger 
and darker a node, the higher the number of interactions. 
The thickness of edges between nodes represents the 
statistical significance of the interactions. In our network, 
several node proteins, including KLF4, SOX4, PDGFRA, 
MEF2C, FOXQ1, FOXP2, TRIB3, NAPAL1, and QKI, 
showed a strong association with other node proteins, 
reflecting high hub degrees. Therefore, they may 
participate in the core role of PPIs.

An in-depth analysis of the PPI network was performed 
using the Cytoscape plugin CytoHubba, which provides 
12 topological methods for ranking the properties of 
nodes in the network. As a result, potential functionally 
relevant proteins can be accurately selected based on the 
scores assigned to node proteins using different algorithms  
(Figure 6). The proteins assigned high scores with all 
algorithms were considered to be potentially relevant 
in CRC. Ten genes (KLF4, SOX4, PDGFRA, MEF2C, 
FOXQ1, FOXP2, TRIB3, PRRX1, PPM1F, and HOMER1) 
were found to be crucial for PPIs and were named “hub 
genes”. Based on these results, we established a circRNA/
lncRNA-miRNA-hub gene subnetwork, including  
28 ceRNA regulatory modules (Figure 7). This network 
highlighted hub genes with likely involvement in CRC 
pathogenesis, which may serve as a useful guide for further 
targeted research into identifying new therapeutic targets 

lo
gF

C

https://cytoscape.org/
https://cytoscape.org/
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Figure 3 The ceRNA regulatory network in CRC. The nodes highlighted in red and blue indicate upregulation and downregulation, 
respectively. circRNA, lncRNAs, miRNAs, and mRNAs are represented by V-shapes, hexagons, diamonds, and ellipses, respectively.

or biomarkers. At the same time, these highlighted genes 
will also become the target genes for further experimental 
verification.

Discussion

In recent years, owing to the ceRNA theory and the use of 

TCGA or NCBI-GEO databases, growing knowledge has 
been gained on the interactions between mRNAs, lncRNAs, 
circRNAs, and miRNAs with differential expression in 
tumor and adjacent non-tumor tissues. These studies mainly 
focused on lncRNA- or circRNA-based ceRNA networks. 
The mechanism by which lncRNAs and circRNAs affect 
miRNA action on downstream target genes in CRC is 
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Figure 5 Protein-protein interaction (PPI) network of differentially expressed genes. A total of 32 DEmRNAs formed the PPI network 
complex based on the Search Tool for the Retrieval of Interacting Genes (STRING) online database. A dark and large node indicates a 
protein with a critical position in the network.
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Figure 6 Analysis of PPI using 12 CytoHubba algorithms. The color intensity of the nodes reflects the score assigned by each algorithm to 
the corresponding proteins; red indicates the highest score, followed by orange and yellow.

not clear. In this study, we identified distinct circRNAs, 
lncRNAs, mRNAs, and miRNAs implicated in CRC, 
providing novel insights into tumor prognosis. Moreover, a 
circRNA/lncRNA-miRNA-mRNA regulatory network was 
constructed by integrated bioinformatics analysis.

circRNAs are a new class of endogenous ncRNAs, 
extracted initially from RNA viruses in 1976 and initially 
considered as the result of splicing errors (19). Later on, 
owing to deep RNA sequencing technology, as well as 
advancements in bioinformatic analysis, circRNAs have 
become a research hotspot. Multiple functions have 
been attributed to circRNAs, including the regulation of 
transcription (20), competition with pre-mRNA splicing, 
miRNA sponging (21-23), and formation of proteins 
involved in various BPs (24). Recent studies have revealed 
that some circRNAs are associated with tumor initiation, 
progression, and metastasis (25,26). In particular, increasing 
evidence indicates a role of circRNAs in the initiation and 

progression of CRC. Tian et al. analyzed 192 pairs of CRC 
tissues and blood samples and found that hsa_circ_0004585 
is significantly up-regulated in both tumors and peripheral 
blood of CRC patients (27). Moreover, the latter study 
showed that hsa_circ_0004585 is positively correlated 
with tumor size, indicating a role of this circRNA in CRC 
carcinogenesis and metastasis. Furthermore, Li et al. 
found that the expression of hsa_circ_102958 significantly 
increased in CRC tissues, compared to adjacent control 
tissues. Moreover, CCK8, colony formation, and Transwell 
assays revealed that hsa_circ_102958 promotes CDC25B 
expression by sponging miR-585 in CRC (28). In our 
study, we analyzed data from CRC and normal colorectal 
tissue samples and found that 44 circRNAs were involved 
in the ceRNA network, based on differential expression of 
circRNAs and on the identification of circRNA-miRNA 
interaction pairs. In addition, 11 circRNAs were selected 
after establishing a circRNA/lncRNA-miRNA-hub gene 
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Figure 7 circRNA/lncRNA-miRNA-hub gene network. The network consists of 11 circRNAs, 2 lncRNAs, 5 miRNAs, and 10 hub genes. 
Red and blue nodes indicate upregulation and downregulation, respectively. circRNAs, lncRNAs, miRNAs, and mRNAs are represented by 
V-shapes, hexagons, diamonds, and ellipses, respectively.

network, and it was found that none of them was previously 
described to be associated with CRC.

Recently, lncRNAs have received attention in relation 
to various cancers, including CRC. For example, lncRNA-
MEG3, a maternally imprinted gene containing ten exons 
and encoding an approximately 1.6-Kb long ncRNA (29), is 
abundantly expressed in many tissues but is downregulated 
in a variety of primary human cancers (30). Another study 
found that MEG3 levels are decreased in CRC tissues and 
evidently associated with histological grade, tumor invasion 
depth, and TNM stage (31). Our data on differential 
lncRNA expression are consistent with that of the above 
study. In addition, Wang et al. found that MEG3 expression 
was downregulated in CRC tissues and cell lines, especially 
in oxaliplatin-resistant tissues and cells. Moreover, the latter 
study revealed a novel MEG3/miR-141/PDCD4 regulatory 
axis that could restrain oxaliplatin resistance in CRC (32). 

In this study, we identified a possible regulatory interaction 
between MEG3 and hsa-miR-145-5p. However, due to a 
lack of experimental validation and regulation of circRNA 
upstream, the target mRNA is temporarily undetermined. A 
previous study had identified another lncRNA, LINC00665, 
as a regulator of viability, apoptosis, and autophagy via the 
miR-186-5p/MAP4K3 axis in hepatocellular carcinoma (33).  
We reasoned that LINC00665 could also affect the 
expression of target genes in CRC by interacting with 
miR-224-5p. On the other hand, the mechanism by which 
lncRNAs and circRNAs together affect downstream target 
genes has not been clarified.

In the ceRNA network constructed in this study, 5 
miRNAs were differentially expressed in CRC patients 
compared to healthy individuals. Previous research showed 
that aberrantly expressed miRNAs regulate the expression 
of multiple oncogenes and tumor suppressors and have 
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been widely associated with cancer development (34). Sun 
et al. demonstrated that lincRNA-SNHG15 promotes the 
development of colorectal carcinoma by functioning as a 
ceRNA controlling the miR-141/SIRT1/Wnt/β-catenin 
axis (35). Another study found that LINC00858 promotes 
tumor cell proliferation, migration, and invasion by acting 
as a ceRNA for miR-22-3p in CRC (36). Of the five 
selected DEmiRNAs involved in our ceRNA network, four 
have been reported to play important roles in the initiation 
and development of CRC, namely hsa-miR-135b-5p, hsa-
miR-145-5p, hsa-miR-224-5p, and hsa-miR-133b (37-40).  
However, to date, a role for hsa-miR-96-5p in CRC has 
not been reported. One study showed that hsa-miR-96-
5p may serve as a marker to distinguish human ovarian 
cancer tissues from their normal counterparts, with a 
97% sensitivity and a 92% specificity, suggesting that this 
miRNA is involved in ovarian cancer development (41). 
In addition, Piotto et al. indicated that hsa-miR-96-5p 
directly regulates the expression of target genes involved in 
homologous recombination and the non-homologous end-
joining pathway (i.e., RAD51, BRCA2, PRKDC, XRCC5, 
and LIG1), thus affecting the efficacy of radiotherapy in 
non-small cell lung cancer (42). This evidence highlights 
the importance of hsa-miR-96-5p in pan-cancer events and 
indicates that it is inextricably linked to CRC initiation and 
development.

To further explore the core genes participating in the 
regulatory network, functional enrichment analyses were 
performed, and a PPI network was established. Finally, a 
circRNA/lncRNA-miRNA-hub gene network, including 28 
ceRNA regulatory modules, was constructed, and 10 hub 
genes were identified. The results showed that the selected 
DEmRNAs were significantly enriched in the oxytocin 
signaling pathway. Deiner et al. found that mice lacking 
the netrin-1 receptor, which is deleted in CRC, exhibited 
abnormalities in hypothalamic-controlled neuroendocrine 
pathways, such as oxytocin secretion, compared to normal 
mice (43). Also, Cassoni et al. showed that oxytocin and the 
oxytocin-analog F314 inhibit tumor cell proliferation and 
growth in colon and mammary carcinomas in mice (44).  
Therefore, the identified DEmRNAs are involved in 
many important CRC-associated biological functions 
and metabolic pathways. Moreover, except for HOMER1, 
PPM1F, and TRIB3, on which no evidence has been 
previously published, many reports have shown that the 
hub genes identified in this study are abnormally expressed 
in CRC, due to upstream lncRNA- or circRNA-mediated 
miRNA changes, ultimately affecting cell proliferation, 

tumor metastasis, and drug resistance (45-49).
However, our study presents several limitations. First, 

as we analyzed pre-existing data, our conclusions may be 
affected by certain errors and uncontrollable factors, such 
as sample age classification and tumor staging, and need 
to be experimentally verified, with particular regard to 
previously unreported hub genes. Second, it is still unclear 
how lncRNAs and circRNAs may act in combination to 
control miRNA expression within the constructed lncRNA/
circRNA-miRNA-hub gene network. To validate these 
findings, we will perform in vitro and in vivo experiments 
focusing on a larger number of clinical samples. Finally, our 
experimental data can be combined with the clinical data 
of patients with CRC to explore further the effects of hub 
genes on the prognosis and treatment of patients. All data 
analyzed in this study were from Chinese subjects and may 
inspire future research on the mechanism underlying CRC 
development in the Chinese population.

Conclusions

We identified several noncoding RNAs with a possible 
pathogenetic role in CRC and built a CRC-specific ceRNA 
network based on our bioinformatics analysis. Our study 
provides novel insights into the molecular events implicated 
in CRC.  
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Figure S1 Differentially expressed circRNAs, lncRNAs, miRNAs, and mRNAs in CRC
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