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Introduction

Hodgkin lymphoma (HL), a malignant tumor of the lymph 

nodes or extranodal lymphoid tissue, comprises two main 

subtypes: classical HL (cHL) and nodular lymphocyte 
predominant Hodgkin lymphoma (NLPHL). Advanced 
NLPHL is prone to turn into aggressive lymphoma, which 
is difficult to treat and has a poor prognosis (1) Owing to 
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the low prevalence of NLPHL (about 0.1–0.2/100,000) (2),  
its etiology and pathogenesis are unclear and need to be 
investigated through different approaches (2,3). In NLPHL, 
which is a malignant B-cell lymphoma, antigen stimulation 
results in the formation of germinal centers by secondary 
lymphoid follicles, which promotes the differentiation of 
germinal center B cells (GCBs) into long-lived plasma 
cells and memory B cells. Any abnormality during the 
differentiation can lead to the development of NLPHL. 
Histone post-translational modification (HPTM) can 
change the chromatin structure in different ways, thus 
affecting the transcription process. SUMO modification 
is characterized by covalent combination and dynamic 
reversibility, it is the only inhibitive HPTM mode 
found so far, which can prevent the occurrence of active 
HPTM.

Methods

Data collection

A keyword search of the GEO database was conducted. 
First, the term “Lymph Nodes” was entered, and then 
“Homo Sapiens” was selected, yielding a total of 43 datasets. 
Finally, GDS4977 was identified from the GSE47044 
series. This dataset contained 35 samples, including 30 
microdissected tumor samples and 5 sorted CD77 samples. 
The GPL6244 platform, which uses the Affymetrix Human 
Gene 1.0 ST Array, was used.

Screening and enrichment analysis of differentially-
expressed genes (DEGs)

DEGs from 10 NLPHL samples and 5 germinal center B 
cell (GCBs) samples in GPL6244 were screened using the 
GEO2R web tool, with the screening conditions adjusted 
to P value <0.05 and LogFc 5 ≥1.5 or LogFc ≤−1.5. Gene 
Ontology (GO) enrichment analysis of  biological processes 
(BP) and Reactome pathways was performed using g:Profile.

Screening of hub genes

The EnrichmentMap and CytoHubba plug-ins in the 
Cytoscape software were used to sort the enrichment 
pathways and screen hub genes.

Screening of core genes

The screened hub genes were further screened for core 
genes by comprehensive analysis using the STRING and 
Reactome databases.

Results

DEGs

In total, 623 statistically significant DEGs were identified 
using the GEO2R web tool, and the box plot of the value 
distribution is shown in Figure 1. Among them there 
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Figure 1 Box plot of value distribution.



4415Translational Cancer Research, Vol 9, No 7 July 2020

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2020;9(7):4413-4423 | http://dx.doi.org/10.21037/tcr-20-1994

were 591 genes were upregulated and 32 genes were 
downregulated (Figure 2; red represents upregulated genes; 
green represents downregulated genes).

Results of GO-BP and Reactome pathway enrichment 
analyses for DEGs

Enrichment analysis for DEGs (68 GO-BP pathways and 
70 Reactome pathways) was performed using the g:Profile 
software. The top 10 GO-BP and Reactome pathways with 
the lowest p-values are listed in Table 1.

Hub genes

The enrichment results of GO-BP and Reactome pathway 

analysis in g:Profiler were visualized in Cytoscape using its 
EnrichmentMap plugin, and a total of 113 nodes and 2,108 
edges were yielded. The top 10 pathways were screened 
by the node degree by using the MCC algorithm in the 
CytoHubba plugin (Table 2). In total, 19 hub genes were 
identified (Table 3).

Protein-protein associations (PPA)

PPA analysis was performed for the 19 identified hub genes 
in Cytoscape using its STRING plugin. The top 10 PPAs 
with the highest edge scores in the PPA network were 
RBBP4(pp)RBBP7, H3F3A(pp)HIST1H4E, H3F3A(pp)
HIST1H4B,  H3F3A(pp)HIST1H4C, H3F3A(pp)
HIST1H4L, YWHAE(pp)YWHAB, HIST1H4B(pp)
HIST1H4E, HIST1H4C(pp)HIST1H4E, HIST1H4B(pp)
HIST1H4L, and HIST1H4B(pp)HIST1H4C  (Figure 3).

Core genes

Figure 4 shows the smallest cell cycle pathway with the 
smallest entities  P value (1.11E−16) in the Reactome 
database. Chromosome maintenance, identified by the 
POSITION function on the Reactome database, was the 
cellular process participated in by the largest number of 
hub genes (Figure 5). In the two pathways and sub-pathways 
above, the core genes NPM1, RBBP4, and RBBP7, together 
with core histones, participated in nucleosome assembly in 
the form of a complex (Figure 6). The core gene SUMO1 
and histone H4 formed a complex (SUMO1-HIST1H4), 
which participated in the entire cell cycle; in essence, 
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Figure 2 Volcano plot of enrichment analysis for DEGs. DEG, 
differentially-expressed gene.

Table 1 The top 10 GO-BP and Reactome pathways with the lowest P value

GO.ID Description P value FDR Phenotype

REAC:72689 Formation of a pool of free 40S subunits 5.97E−31 5.97E−31 1

REAC:156827 L13a-mediated translational silencing of Ceruloplasmin expression 1.02E−30 1.02E−30 1

REAC:72706 GTP hydrolysis and joining of the 60S ribosomal subunit 1.48E−30 1.48E−30 1

REAC:72737 Cap-dependent translation initiation 1.71E−29 1.71E−29 1

REAC:72613 Eukaryotic translation initiation 1.71E−29 1.71E−29 1

GO:0045047 Protein targeting to ER 2.15E−27 2.15E−27 1

GO:0006413 Translational initiation 4.22E−27 4.22E−27 1

GO:0072599 Establishment of protein localization to endoplasmic reticulum 8.97E−27 8.97E−27 1

GO:0006614 SRP-dependent co-translational protein targeting to membrane 5.53E−26 5.53E−26 1

GO:0000956 Nuclear-transcribed mRNA catabolic process 1.75E−25 1.75E−25 1
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histone H4 underwent SUMO1 modification (Figure 7).

Discussion

The prognosis of NLPHL, a rare type of HL, is good in the 
early stages. However, treating advanced-stage NLPHL, 
because of it typically invasive nature, is challenging and 
the prognosis is poor (1). Although NLPHL and cHL 
have different pathological and immunophenotypical 
features,  due to the lack of well-recognized therapies, 
NLPHL is often treated as cHL. It is difficult to explore 
the pathogenesis of NLPHL and suitable treatments 
using whole genomic sequencing technology in large-scale 
studies; however, core genes can be identified through 
microanalysis utilizing the currently available databases. 
In our current study, gene chip analysis in the GPL6244 
platform identified 19 hub genes, among which 8 were 
histone genes, and PPAs existed among histones encoded by 
these 8 genes. It was proposed that there were differences in 
histone expressions between NLPHL and GCBs. Histone 
is an octamer comprising one (H3-H4)2 tetramer and 
two H2A-H2B dimers. Recent studies on the Telomere 

Maintenance pathway also confirmed the hypothesis 
that the core histone was jointly formed by HIST1H4B, 
HIST1H4C, HIST1H4E, HIST1H4L, HIST1H2AE, 
H2AFZ, HIST1H2BM, and H3F3A (4,5).

The nucleosome is the basic structural unit of the 
chromosomes (6). The core nucleosome, a disc-like 
structure with 146 bp of DNA wrapped around the core 
histone octamer (4,7), plays a distinctive role in centromere 
assembly, correct separation of chromosomes, and normal 
cell division (8,9). As shown in Figure 6, the core genes 
NPM1, RBBP4, and RBBP7, along with HJURP and 
RUVBL1, carry CENPA, H4, and CCAN:DNA:CASC5 to 
bind to histones H2A and H2B, finally presenting CENPA, 
H4, H2A, H2B, and CCAN:DNA:CASC5 to RSF Complex 
to complete the assembly of core nucleosomes. During the 
assembly of core nucleosomes, histones are transported 
and transferred by the core genes NPM1, RBBP4, and 
RBBP7. Centromere protein A (CENPA) is a specific 
variant of centromeric histone H3 and also a characteristic 
mark of centromere (10,11). Each chromosome has 
only one centromere. If the centromere is missing, the 
duplicated chromosomes are separated randomly, leading 

Table 2 The top 10 GO and Reactome pathways with the highest node degree

Score GO.ID Description P value Genes

47 GO:0016233 Telomere capping 4.98E−03 HNRNPD, ATM, USP7, HIST1H4C, HIST1H4L,  
HIST1H4E, HIST1H4B

47 GO:0061641 CENP-A containing chromatin  
organization

2.44E−03 RBBP7, RBBP4, NPM1, HIST1H4C, HIST1H4L, 
HIST1H4E, HIST1H4B

47 GO:0034080 CENP-A containing nucleosome  
assembly

2.44E−03 RBBP7, RBBP4, NPM1, HIST1H4C, HIST1H4L, 
HIST1H4E, HIST1H4B

47 REAC:2559586 DNA damage/telomere stress-induced 
senescence

8.74E−03 ATM, H2AFZ, HIST1H4C, HIST1H2BM, HIST1H4L, 
HIST1H4E, HIST1H2AE, HIST1H4B

47 REAC:171306 Packaging of telomere ends 3.94E−03 H2AFZ, HIST1H4C, HIST1H2BM, HIST1H4L,  
HIST1H4E, HIST1H2AE, HIST1H4B

46 REAC:69473 G2/M DNA damage checkpoint 5.06E−03 YWHAE, SUMO1, ATM, WEE1, YWHAB, HIST1H4C, 
HIST1H2BM, HIST1H4L, HIST1H4E, HIST1H4B

46 REAC:73728 RNA polymerase I promoter opening 1.45E−03 H3F3A, H2AFZ, HIST1H4C, HIST1H2BM,  
HIST1H4L, HIST1H4E, HIST1H2AE, HIST1H4B

46 GO:0031055 Chromatin remodeling at centromere 3.38E−03 RBBP7, RBBP4, NPM1, HIST1H4C, HIST1H4L, 
HIST1H4E, HIST1H4B

46 GO:0034724 DNA replication-independent  
nucleosome organization

1.08E−03 RBBP7, RBBP4, H3F3A, NPM1, HIST1H4C,  
HIST1H4L, HIST1H4E, HIST1H4B

46 REAC:912446 Meiotic recombination 2.60E−04 MND1, ATM, H3F3A, H2AFZ, HIST1H4C, HIST1H2BM, 
HIST1H4L, HIST1H4E, HIST1H2AE, HIST1H4B
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to the deletion or doubling of the chromosomes of the 
daughter cells. This is one of the important mechanisms of 
oncogenesis (10,12-14).

Histone chaperones are defined as a group of proteins 
that bind and transport histones and regulate the assembly/
deassembly of nucleosomes (4,15). The nucleophosmin 
(NPM) was the first histone chaperone to be discovered, 
and nucleophosmin 1 (NPM1) is a key member of the 
NPM family (16). Studies have shown that NPM1 can 
maintain genomic stability and regulate cell apoptosis; 
thus, it possesses both oncogenic and tumor suppressor 
functions, which are mainly determined by the level of 
NPM1 expression (17,18). A meta-analysis of 11 published 
studies involving 997 patients showed that, in solid tumors, 
the upregulation of NPM might be a potential therapeutic 
target and NPM overexpression might be a biomarker of 
poor prognosis (19). Patel et al. found (20) that patients 
with acute myeloid leukemia (AML) with NPM1 mutation 

had increased complete response and overall survival rates; 
in contrast, AML patients with NPM1, FLT3-ITD, and 
DNMT3A mutations tended to have poor prognosis. 
RBBP4 and RBBP7 are chromatin remodeling factors, 
which are involved in histone deacetylation (21,22). As 
shown in Figure 6, NPM1, RBBP4, and RBBP7 exist in 
the Nucleosome Assembly pathway; after the completion 
of histone transportation, they bind with HJURP 
and RUVBL1 and are finally removed from the core 
nucleosomes. No evidence has shown either RBBP4 or 
RBBP7 to be a histone chaperone or to be directly bound 
to histones and, thus, behind the development of NLPHL 
. It is speculated that RBBP4 and RBBP7 play a regulatory 
role in NPM1 expression during the occurrence and 
development of NLPHL.

Histone is a substrate for various post-translational 
modifications. Histone modification, which is an epigenetic 
mechanism that regulates gene expression, is the main 

Table 3 The 19 identified hub genes

Gene symbol Description Location Functional consequence

HIST1H4B Histone cluster 1, H4b 6p22.2 Upstream

HIST1H4C Histone cluster 1, H4c 6p22.2 Downstream

HIST1H4E Histone cluster 1, H4e 6p22.2 Downstream

HIST1H4L Histone cluster 1, H4l 6p22.1 Upstream

HIST1H2BM Histone cluster 1, H2bm 6p22.1 Downstream

HIST1H2AE Histone cluster 1, H2ae 6p22.2 Downstream

H2AFZ H2A histone family member Z 4q23 3_prime_UTR, upstream

RBBP4 RB binding protein 4, chromatin remodeling factor 1p35.1 Intron

RBBP7 RB binding protein 7, chromatin remodeling factor Xp22.2 coding_sequence, missense

ATM ATM serine/threonine kinase 11q22.3 genic_downstream, intron, 3_prime_UTR

NPM1 Nucleophosmin 1 5q35.1 Intron, sequence, missense

H3F3A H3 histone, family 3A 1q42.12 Missense, coding

YWHAB Tyrosine 3-monooxygenase/tryptophan 
5-monooxygenase activation protein beta

20q13.12 Coding, synonymous

YWHAE Tyrosine 3-monooxygenase/tryptophan 
5-monooxygenase activation protein epsilon

17p13.3 Intron

HNRNPD Heterogeneous nuclear ribonucleoprotein D 4q21.22 3_prime_UTR

USP7 Ubiquitin specific peptidase 7 16p13.2 stop_gained, coding_sequence, non_coding, synonymous

SUMO1 Small ubiquitin-like modifier 2q33.1 Intron

WEE1 WEE1 G2 checkpoint kinase 11p15.4 3_prime_UTR

MND1 Meiotic nuclear divisions 4q31.3 intron



4418 Li et al. SUMO1 modification is one of the pathogenesis of NLPHL

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2020;9(7):4413-4423 | http://dx.doi.org/10.21037/tcr-20-1994

Figure 3 PPA network. PPA, protein-protein association.

source of variation. Common modifications include 
acetylation/deacetylation, phosphorylation, methylation, 
citrullination, ubiquitination/deubiquitination, and 
SUMOylation (14). Based on the POSITION function in 
the Reactome database, we found 232 SUMO1 positions in 
the cell cycle pathway, among which 224 positions existed 

as proteins, 7 as complexes, and 1 as an interactor; 205 
positions were located in the cell cycle (including mitosis, 
meiosis, and checkpoints) and 27 in the chromosome 
maintenance. Only SUMO1-HIST1H4 was involved in all 
four processes of cell cycle; in addition, it is the product of 
the direct binding of SUMO1 to HIST1H4. We speculate 
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Figure 6 Nucleosome assembly.
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that NLPHL involves SUMO1 modification of histones, 
and the modification site is located on histone H4 (Figure 7).

Small ubiquitin like modifier1 (SUMO1) is a member of 
the SUMO family (23). SUMO is a ubiquitin-like protein, 
but its function differs somewhat from ubiquitin proteins. 
It modifies the substrate protein to regulate the activity of 
the target protein and its interaction with other molecules. 
It also participates in nucleocytoplasmic transport, 

transcriptional regulation, and cell apoptosis (24). Normally, 
the effects of SUMOylation are negative (25-27). Many 
studies have shown an association between SUMOylation 
and a variety of tumors including lung cancer, breast cancer, 
and ovarian cancer. In primary liver cancer, SUMOylation 
is also associated with multiple drug resistance (28). The 
SUMOylated MAFB protein can promote the pathogenesis 
of rectal cancer, and knockdown of SUMO E1 or SUMO-
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conjugating enzyme (E2) inhibits the maintenance and self-
renewal of rectal cancer stem cells (29). SUMOylation is 
a reversible process. DeSUMOylation is regulated by the 
SUM0-specific protease (SENP) family (30). However, 
the SENPs family is large, and different members exhibit 

different regulatory effects on tumors. The overexpression 
of SENP1 and SENP3 has been found to promote 
tumorigenesis (31,32), whereas high expressions of SENP2 
and SENP5 may hinder cancer development (33,34).

In summary, knockdown of NPM1 expression or 

Figure 7 SUMO1 modification of histone H4.
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mutant NPM1 may interfere with the assembly of core 
nucleosomes, prevent chromosome separation, and thus 
suppress tumor occurrence and growth. Moreover, histone 
modifications can be destroyed by knockout of SUMO1-
activating enzyme or overexpression of SENP2/5 to achieve 
a therapeutic effect in NLPHL; however, new laboratory 
technology  is required to verify our findings. Furthermore 
the specific site on histone H4 where the SUMO1 
modification occurred was not identified in this study, which 
also warrants further investigation.
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