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Introduction

The Precision Medicine Initiative unveiled in January 2015, 
included an investment of $70 million to the National 
Cancer Institute (NCI), to “scale up efforts to identify 
genomic drivers in cancer and apply that knowledge in 
the development of more effective approaches to cancer 
treatment” (1). In the field of cancer research and care, the 
concept of precision medicine—prevention and treatment 
strategies that take individual variability into account—
hinges on the development of valid biomarkers interrogating 
key aberrant pathways potentially targetable with molecular 
targeted or immunologic therapies (1). Although biomarkers 
such as prostate-specific antigen (PSA), have been known 
and used for decades to attempt to guide prognostic and 
therapeutic decisions, the recent revolution in molecular 
biology, with the rise of high-throughput sequencing and 
increased molecular characterization of tumor tissue has led 
to an exponential increase in attempts to measure and target 
aberrant pathways at the molecular level. Nevertheless, 

there has been a large gap between multiple initial reports 
of biomarkers, often with diagnostic performance that 
cannot be reproduced in later studies, and full clinical 
implementation and validation of the biomarkers due to 
issues in study design, assay platforms, and availability of 
specimens for biomarker development (2,3).

Nevertheless, with the recent emergence of highly 
selective molecular targeted agents and high-throughput 
genomic characterization technologies, robust and well-
validated cancer biomarkers are increasingly needed. For 
instance, more than 90% of oncological drugs that enter 
clinical development will not reach market approval due 
to failure of clinical trials to demonstrate therapeutic 
benefit, contributing to costly and slow cancer drug 
development (4). As acknowledged by the USA Food 
and Drug Administration (FDA), the judicious use of 
biomarkers is expected to play an important role in 
minimizing risk of clinical trial failure by enriching the trial 
populations with specific molecular subtypes responding 
better to tested therapies. In this review, we overview recent 
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trends in cancer biomarker development and discuss the 
issues in clinical translation of cancer biomarkers.

Biomarkers in cancer care

A biomarker is an objectively measured characteristic 
that describes a normal or abnormal biological state in 
an organism by analyzing biomolecules such as DNA, 
RNA, protein, peptide, and biomolecule chemical 
modifications (5). However, it must be acknowledged that 
the definition of biomarkers has been evolving over the past 
decade, with one especially broad definition by the World 
Health Organization suggesting that “A biomarker is any 
substance, structure or process that can be measured in the 
body or its products and influence or predict the incidence 
of outcome or disease.” (6,7). More specifically in terms of 
clinical utility, a cancer biomarker may measure the risk of 
developing cancer in a specific tissue or, alternatively, may 
measure risk of cancer progression or potential response to 
therapy. Besides providing useful information in guiding 
clinical decision making, cancer biomarkers are increasingly 
linked to specific molecular pathway deregulations and/
or cancer pathogenesis to justify application of certain 
therapeutic/interventional strategies. The conceptual 
framework of cancer biomarker development has also been 
evolving with the rapid expansion of our omics analysis 
capability of clinical biospecimens based on the traditional 
path of biomarker deployment (5).

Cancer biomarkers can be classified into the following 
categories based on their usage. Predictive biomarkers 
predict response to specific therapeutic interventions such 
as positivity/activation of HER2 that predicts response 
to trastuzumab in breast cancer (8-10). Similarly, KRAS-
activating mutations predict resistance to epidermal growth 
factor receptor (EGFR) inhibitors such as cetuximab in 
colorectal cancer (11). Prognostic biomarker, on the other 
hand, may not be directly linked to or trigger specific 
therapeutic decisions, but aim to inform physicians 
regarding the risk of clinical outcomes such as cancer 
recurrence or disease progression in the future. An 
example of a prognostic cancer biomarker is the 21-gene 
recurrence score which was predictive of breast cancer 
recurrence and overall survival in node-negative, tamoxifen-
treated breast cancer (12). Another class of biomarker, the 
diagnostic biomarker, is used to identify whether a patient 
has a specific disease condition. Diagnostic biomarkers 
have recently been implemented for colorectal cancer 
surveillance by testing for stool cancer DNA (13).

Processes of biomarker development

Biomarker development involves multiple processes, linking 
initial discovery in basic studies, validation, and clinical 
implementation (Figure 1) (5,14-21). The ultimate goal of 
the processes is to establish clinically accessible biomarker 
tests with clinical utility, informing clinical decision-making 

∙	 Clearly defined research question, clinical context of application
∙	 Study design (sample size, clinical follow-up)
∙	 Type of specimens (source, storage,...)

∙	 Choice of assay platform
∙	 Assay reproducibility
∙	 Assay standardization
∙	 Sample availability

∙	 Study design (sample size, clinical follow-up)
∙	 Cost of clinical assessment/trial
∙	 Sample/patient cohort availability

∙	 Ever-changing regulation/legislation
∙	 Ever-changing assay technology
∙	 Timely clinical deployment
∙	 Intellectual property
∙	 Engagement of multidisciplinary groups
∙	 Big data analysis infrastructure
∙	 Physician/patient education

Biomarker discovery

Key issues/challenges

Assay development
Analytical validation

Clinical utility validation

Clinical implementation
∙	 Regulatory approval
∙	 Commercialization
∙	 Health insurance coverage/reimbursement
∙	 Incorporation into practice guidelines

Figure 1 Schematic overview of the processes of cancer biomarker development.
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to improve patient outcomes (21,22). However, there are 
many hurdles as evidenced by the low estimated rate (0.1%) 
of successful clinical translation of biomarkers (23). Here we 
elaborate each of the processes, which should be designed/
planned prior to the conduct of the study to ascertain 
validity of cancer biomarkers.

Biomarker discovery

At the start of any biomarker development, biomarkers 
should be “discovered” and are typically validated within 
the same initial report. Validation based on predefined 
prediction rule in an independent patient series is ideal, but 
it is often substituted by cross-validation-based methods 
when independent patient sets are not available. The 
research question and plan, including the fundamental use 
of the biomarker, should traditionally be clearly defined 
prior to the analysis, although this can be challenging at the 
very early stages of biomarker development. In this era of 
ever-evolving high-throughput omics technologies where 
thousands of individual molecules can be easily interrogated 
without a priori assumptions, research hypotheses are often 
generated in a post hoc manner, following often serendipitous 
discovery from unbiased mining of the genome-wide 
measurements (data-driven hypothesis generation) (20). 
Another relevant issue to be addressed early in biomarker 
development is the target population to be tested in specific 
clinical contexts, which will guide subsequent clinical 
evaluation and implementation. In general, broader target 
populations could lead to increased costs and risks of failure 
during the development stage.

Study design/setting, from which analyzed biospecimens 
are derived, is the major source of bias that hampers 
subsequent biomarker development. Ideally, the specimens 
should be prospectively collected based on well-defined 
inclusion and exclusion criteria together with accompanying 
clinical annotations pre-specified in the study protocol. A 
cohort or case-control study design is typically employed. In 
a cohort study, clinical characteristics of enrolled individuals 
as well as information of intervention and follow-up are 
critical in identifying molecular correlates associated with 
clinical outcomes of interest. In a case-control study, 
potential confounding factors should be properly matched 
between cases and controls to minimize false discovery. In 
practice, biomarker discovery is often based on “samples 
of convenience”, which were incidentally available to the 
investigator at the time of research and collected without 
prior intention of specific biomarker discovery (24). 

This could introduce unrecognized confounding factors, 
which may contribute to the false positive associations of 
the biomarkers. The study design quality may be semi-
quantitatively evaluated by using scores such as level of 
evidence scale proposed by Simon et al. (16). In general, 
evidence derived from large-scale well-predefined 
prospective trials is regarded as most reliable. Retrospective, 
observational studies may be affected by multiple sources of 
bias, which can be better identified if reporting guidelines 
such as Reporting Recommendations for Tumor Marker 
Prognostic Studies (REMARK) for prognostic studies (25), 
Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE) for observational studies (26) and 
Standards for Reporting of Diagnostic Accuracy (STARD) 
for diagnostic studies (27) are used to determine reliability 
and quality of biomarkers in the initial reports.

A common cause of failure in developing robust 
predictive and especially prognostic biomarkers is to define 
them based on clinically invalid surrogate endpoints such 
as objective response in oncology trials as well as short-
term outcomes from retrospective studies. Biomarkers 
trained for poorly-defined endpoints are more likely to fail 
in subsequent prospective evaluation. A prognostic gene-
expression signature trained on long-term outcome using 
archived specimens has been successfully validated in a 
series of independent clinical and experimental studies 
(28-31). While the most optimal setting is prospective 
sample collection and follow-up based on a fully predefined 
protocol, this requires costly and lengthy biomarker 
assessment, which hampers timely deployment of cancer 
biomarkers. As an alternative, retrospective analysis 
of samples archived as part of previously completed 
prospective trials (prospective-retrospective design) is 
proposed to shorten the time frame while ascertaining 
quality of study design (16). Another solution is to develop 
a biobank in which biospecimens and complete clinical 
annotations are prospectively accumulated based on well-
defined protocols. However, in part due to the complex and 
heterogeneous nature of cancer, it has become increasingly 
recognized, that there is a need for larger integrated 
biobanks (32,33) which require careful development and 
adherence to published biobanking guidelines (34). The 
practical challenges of biobanking in cancer patients has 
been underlined by a recent USA survey of NCI-funded 
cancer researchers who conduct tissue-based research 
showing that 39-47% reported difficulty obtaining 
biospecimens of adequate numbers and quality and low-
quality biospecimens resulted in 60% questioning their 
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findings and 81% limiting the scope of their work (35). 
Quality of clinical annotations is another key factor in 
utilizing the resources to identify reliable biomarkers and 
validate their clinical utility. A recent NCI joint workshop 
recommended improved sharing of existing specimens and 
data and creation of NCI-wide inventory of prediagnostic 
specimens and cancer diagnosis data, ongoing engagement 
of the clinical, translational and basic research communities, 
and encouraging the development of pilot projects (18).

Robustness of sample processing and data analysis 
procedures is another factor that influences reproducibility 
of biomarker studies. For example, a high diagnostic 
accuracy of a peptide signature for ovarian cancer was 
not confirmed in subsequent independent reanalysis of 
the original dataset possibly due to variation in sample 
processing (36,37). One report of proteomic biomarker 
discovery noted that common statistical algorithms 
run on data with low sample sizes can overfit and yield 
misleading misclassification rates and that prefiltering 
variables exacerbated this problem (38). Similarly, a 
critical review of prognostic microarray studies in cancer 
revealed that half of the reported prognostic gene 
signatures were not reproducible due to critical flaws in 
the data analysis methods (39). These reports highlight the 
importance of careful assessment of technical soundness 
and methodological validity and disclosure of information 
to the research community to enable fair evaluation of 
reported biomarkers and identification of candidates for 
further development. In addition, ensuring reproducibility 
of bioinformatics analysis is a critical determinant of 
successful clinical translation of genome-based biomarkers. 
There have been several efforts to develop informatics 
infrastructure to address this issue, including public 
repository of datasets with relevant annotations on 
biological, clinical, and experimental parameters, analysis 
software repository, and systems to record whole process of 
data analysis itself to allow anyone to rerun or modify the 
analysis to verify robustness of reported findings (40,41).

Biomarker assay development and analytical validation

Following the discovery phase that typically includes 
internal validation, candidate biomarkers are adapted to 
clinically applicable assay platforms, and subjected to two 
types of validation, namely analytical validation, i.e., how 
accurately and reliably does the test measure the analyte(s) of 
interest in the patient specimen and clinical validation, i.e., 
how robustly and reliably is the test result correlated with 

the clinical phenotype or the outcome of interest. Analytical 
validation is typically performed by assaying the same set of 
samples by both the assay used in the initial discovery and 
the clinical deployment platform to determine robustness 
and reproducibility of the measurements. Frequently used 
assay technologies generally used for analysis of single 
gene/protein anomalies include real-time polymerase chain 
reaction (RT-PCR) to assess gene expression or DNA 
mutations (e.g., BRAF V600E mutation in melanoma), 
fluorescent in situ hybridization (FISH) to assess DNA copy 
number or genetic translocation (e.g., HER2 amplification, 
BCR-ABL translocation), and immunohistochemistry (IHC) 
to assess protein expression and subcellular localization (e.g., 
estrogen receptor expression in breast cancer).

More recently, several multi-gene assays classified as in 
vitro diagnostic multivariate index assays (IVDMIA) have 
been introduced into clinic (13,42,43). The implementation 
of gene expression-based multi-gene assays has been a 
challenging task due to poorer reproducibility of the 
measurements (44). Currently available tests, such as 
MammaPrint (45) and Oncotype Dx (12), are performed in 
centralized laboratories to minimize technical variability. 
Emerging technology such as direct digital counting of 
transcripts without target amplification could enable 
more robust gene expression measurements reproducible 
across individual laboratories (46,47). Resequencing of a 
targeted panel of genes (disease-specific, exome, etc.) has 
been tested as another option (48), identifying somatic 
DNA mutations potentially driving cancer in nearly 2/3 
of patients with lung adenocarcinomas and linking to 
molecular targeted therapy in 28% of patients (49). Clinical 
sequencing is a promising approach, but the interpretation 
and reporting of incidental findings from non-targeted 
sequencing is still being debated (50). In addition, high 
demand on data analysis, referred as the “$1,000 genomic 
test [but] $100,000 genomic analysis”, is another layer of 
challenge in sequencing-based approaches (51). Capability 
to analyze formalin-fixed, paraffin-embedded (FFPE) tissue 
samples greatly enhances general applicability of biomarker 
assays (52-54). Emergence of highly sensitive assays, e.g., 
single cell profiling, are expected to enable analysis of 
body fluid-derived specimens such as whole blood, plasma, 
serum, ascites, and urine to assess circulating microRNA, 
circulating DNA, and circulating tumor cells (CTCs)-
derived biomolecules (55,56). These technologies are 
expected to achieve less-invasive assessment of molecular 
biomarkers (liquid biopsy) (55). Circulating tumor 
DNA was highly accurate in assessing mutation status of 
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BRAF V600E mutation (100% specificity and sensitivity 
reported) and KRAS point mutations (>90% sensitivity and 
specificity) in subjects with metastatic colorectal cancer in 
one blinded prospective trial (57). Another report, assessing 
the role of CTCs, defined as 5 or more per 7.5 mL of whole 
blood in this study, in metastatic breast cancer, did not 
find an improvement in outcomes after changing therapy 
in case of persistently elevated CTCs but confirmed that 
CTCs were strongly prognostic for overall outcome (58). 
In addition to their role in diagnosis, circulating cell-free 
microRNAs are also being currently assessed as a predictive 
cancer biomarker with some encouraging preliminary 
reports (59,60).

Validation of clinical utility

After analytical validity is confirmed, the biomarker assay 
in the clinical deployment platform must be evaluated to 
confirm its performance in predicting or diagnosing the 
clinical phenotype or outcome of interest as demonstrated in 
the discovery and initial validation phase (5,21,61). Ideally, 
the biomarker should be evaluated in statistically well-
powered prospective trials as performed in the TransATAC 
study for breast cancer recurrence prediction (62). However, 
it is realistically infeasible to test all candidate biomarkers 
in this manner due to financial constraints and/or limited 
availability of patient cohorts. Therefore, similar to the 
setting of biomarker discovery, the use of prospective-
retrospective design and/or biobank/biorepository samples 
could be a potential alternative to overcome these obstacles. 
Clinical utility assessment could also include analysis 
of clinically meaningful outcome benefit, comparative 
effectiveness, cost-effectiveness of biomarker-guided clinical 
care, and assessment of alternatives and availability of the 
biomarker based on real-world clinical data or mathematical 
modeling (21,63).

Clinical implementation

An analytically and clinically validated biomarker assay is 
now ready for implementation in clinical care. This phase 
includes the following four key elements, which vary widely 
across regions: regulatory approval, commercialization, 
coverage by health insurance companies, and incorporation 
in clinical practice guidelines. In the USA, there are two 
paths for regulatory approval: in vitro diagnostic device 
(IVD) as commercial medical device with 510(k) clearance 
overseen by the FDA, and laboratory developed tests 

(LDT), home-grown assay developed and optimized at 
a diagnostic lab performing the test, which will likely 
be regulated by the FDA although current oversight 
is more limited (64). Clinical biomarker tests must be 
conducted in diagnostic laboratories certified for Clinical 
Laboratory Improvement Amendments (CLIA) and in 
accordance with state-specific regulations. Coverage by 
health insurance is critical for physicians to order the tests. 
Assignment of current procedural terminology (CPT) codes 
as well as incorporation into clinical practice guideline/
recommendation supports payer’s decision. Centers for 
Medicare & Medicaid Services (CMS) classifies the tests 
into tier 1 (CPT code-assigned, commonly performed 
tests) and tier 2 (less commonly performed tests grouped by 
complexity). CMS defers pricing for new CPT codes to the 
local Medicare administrative contractors in a procedure 
known as “gapfill”, which causes delayed reimbursement 
for many biomarker tests (65). Post-marketing clinical 
utility validation will further support the use of biomarker 
tests ,  and may result  in indication for additional 
diseases and/or clinical scenarios. Resources such as the 
National Comprehensive Cancer Network Biomarkers 
Compendium (66) are available to access the current 
recommendation for biomarkers in clinical guidelines (67).

Cancer biomarkers currently available in clinic

An example of a molecular biomarker in clinic is 
overexpression/amplification of HER2 (ERBB2), a member 
of the EGFR family, predictive of response to monoclonal 
antibodies such as trastuzumab and pertuzumab in breast 
cancer (8-10). It has been shown in pivotal phase III trials 
in breast cancer that subjects with HER2 overexpression 
(approximately 20% of patients) treated with anti-HER2 
therapy have improved disease-free and overall survival 
(8-10). American Society of Clinical Oncology and College 
of American Pathologists recommend primarily IHC and 
in situ hybridization for assessment of HER2 status (68).  
Currently, the FDA has approved 10 HER2 assays as 
companion diagnostic devices (50% of all approved 
companion diagnostic devices) and 3 other HER2 assays 
as nucleic acid based tests cleared by the Center for 
Devices and Radiological Health [FDA website accessed on 
March 20th 2015 (69)]. HER2 overexpression is similarly 
predictive of response to trastuzumab in esophago-gastric 
adenocarcinoma (70). OmniSeq Target assay analyzes 
clinically actionable somatic DNA alterations in 23 known 
cancer-related genes, which acquired the New York state 
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approval as LDT. Other major predictive biomarkers, 
including BCR-ABL in chronic myeloid leukemia and KRAS 
mutations in colorectal cancer and multiple mutations in 
non-small cell lung cancer (NSCLC), are listed in Table 1.

Despite the numerous prognostic biomarkers reported 
in the literature, only seven biomarkers have been approved 
by the FDA Center for Devices and Radiological Health 
(Table 2) (48). One of the major reasons is that prognostic 
prediction itself often does not directly change clinical 
decision making unless coupled to specific therapeutic 
options. Despite this, many other prognostic biomarkers 
are available through the LDT pathway. Mammaprint is 
one of the first gene expression signature-based assays based 
on the measurement of 70 genes to predict breast cancer 
recurrence after chemotherapy, which was recently adapted 
for use in FFPE tissue (45). Another gene expression-based 
assay, Oncotype Dx Breast Cancer Assay measures 21 genes 
predicting breast cancer recurrence in women with node 
negative or node positive, ER-positive, HER2-negative 
invasive breast cancer (12,79). Similar tests are also available 
for colon and prostate cancer, all of which analyze gene 
expression in tumor tissue (80,81). A 186-gene expression 
signature in non-tumor stromal liver tissue has been 
validated to predict hepatocellular carcinoma development 
and recurrence as well as liver cirrhosis progression, and 
was recently implemented in an FDA-approved diagnostic 
device (28-30).

Diagnostic biomarkers are one of the most diverse 
classes of biomarkers ranging from assays developed for 
cancer screening to diagnostic tests assessing progression 
of a known cancer (see Table 2 for a list of FDA-approved 
diagnostic genetic tests). One recent example of a diagnostic 
biomarker is Cologuard, a multigene DNA (KRAS 
mutations, aberrant NDRG4 and BMP3 methylation) stool 
test combined with fecal immunochemistry designed to 
screen for colorectal cancer in individuals at average risk 
of colorectal cancer. In a recent clinical trial of nearly 
10,000 participants, sensitivity of the test for detecting 
colorectal cancer was higher than fecal immunochemical 
test alone (92.3% and 73.8% respectively) although the test 
also had a higher rate of false positives (specificity 86.6% 
and 96.4% for Cologuard and fecal immunochemical test  
respectively) (13). These encouraging results led to the 
approval of this test by the FDA in August 2014. Recently, 
there has also been increased interest in developing 
minimally invasive diagnostic tumor biomarkers, using 
the measurement of circulating DNA or microRNA. For 
instance, a new technology termed cancer personalized T
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profiling by deep sequencing (CAPP-Seq) has been tested 
on circulating tumor DNA in patients with NSCLC. Levels 
of circulating DNA correlated with tumor volume and 
provided earlier response assessment than radiography in 
this preliminary trial while potentially allowing the non-
invasive detection of actionable mutations (82). Another 
report, focusing on circulating microRNA serum profiles 
identified a microRNA profile thought to distinguish 
subjects with pancreatic cancer from healthy controls, 
even at early stages of the disease (83). This result requires 
further validation but may suggest a direction towards 
which the field of diagnostic biomarkers is moving. 
However, even when FDA-approved, commercialization 
may still be a challenge due to the high cost required for 
assay development.

Cancer biomarkers under evaluation in clinical 
trials

Multiple predictive biomarkers, mostly based on single 
gene/protein, are currently in phase II or III evaluation 

along with their companion therapeutic agents (Table 3). 
From this snapshot, the increasing importance of predictive 
biomarkers is apparent as is a trend to develop minimally 
invasive cancer biomarkers. Biomarkers validated in a certain 
type of cancer are undergoing discovery and validation 
in other cancers (for instance BRAF mutations or HER2 
overexpression) underlining certain shared oncogenic drivers 
and less prevalent cancers are also benefitting from the 
rapid developments in the field. The 70-gene breast cancer 
signature is currently being evaluated for its recurrence-
predictive capability in comparison to clinico-pathological 
assessment in a large prospective trial enrolling more than 
6,600 subjects in nine countries (MINDACT study) with 
early results suggesting that the 70-gene signature added 
information to usual assessment (84).

Future perspectives and conclusions

In this review, we aimed to overview the current landscape of 
cancer biomarker development. The speed of technological 
development has highlighted the challenges facing 

Table 3 Predictive biomarkers currently under clinical evaluation and registered in clinicaltrials.gov

Organ Cancer Biomarker Associated drug Phase
Clinicaltrials. 

gov identifier

Breast Breast cancer BRCA1/2 Olaparib III NCT02000622

CTCs positive for HER2 Trastuzumab—Emtansine II NCT01975142

TOP2A (in subjects with  

HER2 overexpression)

Anthracycline-based 

neoadjuvant chemotherapy

II NCT02339532

HER2 (negative in tumor but 

positive in CTCs)

Lapatinib III NCT01619111

Gastrointestinal Colorectal New biomarkers (unspecified) Cetuximab II NCT01276379

RAS (mutation-type) FOLFOXIRI and bevacizumab II NCT02350530

BRAF LGX818, BYL719 II NCT01719380

Esophago-gastric HER2 Afatinib and trastuzumab II NCT01522768

Head and neck Squamous cell 

carcinoma

HER and KRAS HM781-36B II NCT02216916

Hematological Cutaneous and 

peripheral T-cell 

lymphomas

GATA-3 MLN9708 II NCT02158975

Lung NSCLC ROS1 Crizotinib II NCT02183870

BRAF V600E Dabrafenib, trametinib II NCT01336634

Skin Melanoma BRAF V600E/K Trametinib, binimetinib II NCT02196181

CTCs, circulating tumor cells; HER2, human epidermal growth factor receptor 2; TOP2A, topoisomerase II alpha; NSCLC, non-

small cell lung cancer. 
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regulatory oversight and legislation in their attempts to 
keep up with the rapid pace of scientific changes while 
allowing proper consideration to how the new biomarkers 
could shape the future of medicine (85,86). One of the 
major challenges is to manage the tradeoff between safety 
and speed of clinical translation. For example, regulation 
of LDT by the FDA will improve assay quality and safety 
and increase overall medical utility of the tests, while it 
could hamper timely deployment of the tests and benefit 
only large commercial laboratories with capabilities to 
accommodate the high requirements. The large amount 
of data generated by the assays have posed supplementary 
challenges in the analysis of “big data”, which requires 
massive computational resources for data storage, 
processing, and interpretation (87). Informatics resources 
such as ClinGen (88) are being developed to support the 
process. Also, systems to integrate genomic information 
with electronic medical records (EMRs) are actively 
developed, where protection of patient privacy is a central 
issue such as the Electronic Medical Records and Genomics 
Network (eMERGE), a NIH-funded consortium aiming 
to develop and disseminate approaches combining DNA 
biorepositories with EMRs (89). However, the integration 
of EMRs with genomic datasets remains in its infancy, 
due to a number of challenges including defining optimal 
storage standards of genomic data, integration of rich 
phenotype information, interpretation of complex data in a 
format easily accessible to clinicians and of course ethical, 
legal and social issues (90). Defining unified standard for 
the systems and data formats is particularly challenging due 
to the big financial/commercial interests.

Another crucial aspect of biomarker development, 
especially genomic biomarkers, is the issue of intellectual 
property. In the USA, a recent high profile Supreme 
Court decision, The Association for Molecular Pathology 
versus Myriad, determined that isolated but otherwise 
unmodified genes were products of nature and therefore 
not patent eligible subject matter (91). This decision 
was a response to an ongoing lawsuit between Myriad 
Genetics, who owned the exclusive rights to analyze the 
BRCA1 and BRCA2 gene mutations, and a coalition of 
groups who challenged the constitutionality and validity 
of the BRCA1 and BRCA2 gene patents. In this context, 
the USA Patent and Trademark Office has recently issued 
new guidelines which enforce more stringent criteria to 
patent natural products such as antibiotics, or even nucleic 
acids, peptides and proteins. These new guidelines have 
generated considerable concern in the biotechnology world 

due to their far-reaching consequences that are still being 
considered (92). Of note, genetic sequences are currently 
still patent-eligible in the European Union and in Australia 
if certain conditions are fulfilled (93,94). It is expected to 
take more time to reach a solution acceptable to all relevant 
parties.

Despite unclear future prospects and regulatory and 
legislative minefields, several examples of successful 
clinical translation summarized above have emphasized the 
challenges but also the opportunities at each step of cancer 
biomarker development. Acknowledging these challenges 
and implementing them in the design of biomarker 
development will help streamline the whole process, and 
eventually transform cancer patient care by fulfilling the 
vision of Precision Medicine.
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