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Background: Colon cancer (CC) is one of the tumors with high morbidity and mortality in the world, and 
has a trend of younger generation. The molecular level of CC has not been fully elaborated. The purpose of 
this study is to screen and identify important genes with poor prognosis and their mechanisms at different 
levels.
Methods: GSE74602 and GSE10972 gene expression profiles were downloaded from the Gene Expression 
Omnibus (GEO) database. There were 58 normal tissues and 58 CC tissues. Differentially expressed genes 
(DEGs) were screened out by using the GEO2R tool and Venn diagram. Then, the DAVID online database 
was used to perform the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis. Six hub genes with the highest correlation were screened out after the modular 
analysis of the protein-protein interaction (PPI) network by using Cytoscape’s MCODE plug-in. Finally, the 
overall survival of key hub genes and potential pathways were verified in GEPIA and UALCAN database.
Results: A total of 78 up-regulated DEGs were enriched in the mitotic nuclear division, cell division, cell 
proliferation, anaphase-promoting complex-dependent catabolic process and G2/M transition of the mitotic 
cell cycle. In total, 130 down-regulated DEGs were enriched in muscle contraction, bicarbonate transport, 
cellular response to zinc ion, negative regulation of growth, negative regulation of leukocyte apoptotic 
process and one-carbon metabolic process. CDK1 , CCNB1, CDC20, AURKA, CCNA2 and TOP2A were the 
top six hub genes, mainly enriched in cell cycle pathways. Among them, CCNB1, CDK1, CDC20, CCNA2 
were enriched in the G2/M phase. GEPIA and UALCAN database confirmed that CCNA2 and CCNB1 had 
a significant relationship with the poor prognosis of CC patients. Meanwhile, there was a positive correlation 
between the two.
Conclusions: Screening out genes with abnormal expression in CC help understand the initiation and 
progression of CC at the molecular level and explore candidate biomarkers for diagnosis, treatment and 
prognosis.
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Introduction

Colorectal cancer ranks third in incidence and second 
in mortality across the world (1). There are expected to 
be 147,950 newly diagnosed colorectal cancer patients 
in the United States by 2020, including 104,610 cases of 
colon cancer (CC) and 43,340 cases of rectal cancer. The 
median age of diagnosis for CC is 69 years, although CC 
has a trend towards younger age (2). Dietary patterns, 
body mass index, lifestyle factors will affect the morbidity. 
The adoption of best practices in cancer treatment 
and management, longer standing screening, and early 
detection programs have given rise to the colorectal 
survival rates in some developed countries. Current 
screening methods mainly include fecal occult blood test 
(FOBT), flexible sigmoidoscopy, and colonoscopy. The 
fecal occult blood test has low specificity. A common 
colonoscopy is invasive with poor comfort while painless 
colonoscopy costs more. The preliminary preparation 
process is more complex. Despite the rapid spread of 
screening programs since 2000, the proportion of cases 
diagnosed early in CC has only slightly increased, from 
34% in the mid-1990s to 36% between 2012 and 2016 (3). 
Many researchers, therefore, expect to find CC-specific 
biomarkers for more convenient and accurate screening. 
These tumor markers can also be used for cancer risk 
stratification, treatment protocol formulation, prognostic 
analysis, and recurrence monitoring.

Understanding the regulation of gene expression is a 
good way to figure out the relationship between genotype 
and phenotype (4). Therefore, many scholars applied 
microarray technology and bioinformatics analysis to 
medical oncology, hoping to discover the differences 
between genetic and epigenetic phenotypes caused by 
tumors and to evaluate markers for disease diagnosis and 
treatment. However, analyzing independent microarrays 
from individual surveys often increase the false-positive 
rate, making it difficult to identify reliable key genes 
and signaling pathways. Based on this, we expected to 
screen reliable differentially expressed genes (DEGs) by 
overlapping related datasets. We present the following 
article in accordance with the MDAR checklist (available at 
http://dx.doi.org/10.21037/tcr-20-2309).

Methods

In this study, we downloaded GSE74602 and GSE10972 
gene expression profiles from Gene Expression Omnibus 

(GEO) (Affymetrix  GPL6104 plat form, I l lumina 
humanRef-8 v2.0 expression beadchip). There were 30 
normal tissues and 30 CC tissues in GSE74602. There were 
28 normal tissues and 28 CC tissues in GSE10972. The 
study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). Approval from the 
Institutional Review Board (IRB) was not needed since our 
data were extracted from the GEO database.

Identification of DEGs

The web tool GEO2R (Http://www.ncbi.nlm.nih.gov/geo/
geo2r) was used to screen for DEGs in CC and non-cancer 
tissue samples. After the standardization of the micro matrix 
results, DEGs were identified with logFC (fold change) >1 
and adj. P value <0.01. A total of 78 up-regulated and 130 
down-regulated genes were detected on the ‘Draw Venn 
Diagram’ website.

Kyoto Encyclopedia of Genes and Genomes (KEGG) and 
Gene Ontology (GO) enrichment analyses of DEGs

GO and KEGG pathway enrichment analyses were 
performed by DAVID online database, followed by the 
construction of the protein-protein interaction (PPI) 
network. Through the module analysis of the whole 
network by using the MCODE plug-in of Cytoscape, six 
hub genes with the highest degree of correlation were 
screened out.

Survival analysis to screen the candidate genes

Key hub genes and potential pathways were validated in the 
GEPIA and UALCAN database. This method was helpful 
to screen out genes with abnormal expression in CC, 
further understand the initiation and progression of CC at 
the molecular level, and explore candidate biomarkers for 
diagnosis, treatment and prognosis.

Statistical analysis

The web tool GEO2R is based on R software version 
3.2.3 and the “limma”, “GEOquery” and “Biobase” 
packages .  The GEPIA and UALCAN use the log-
rank test, sometimes called the Mantel-Cox test, for 
the hypothesis evaluation. The GEPIA and UALCAN 
are based on R (version 3.3.2) and Perl (version 5.22.1) 
programs (5,6).

http://dx.doi.org/10.21037/tcr-20-2309
Http://www.ncbi.nlm.nih.gov/geo/geo2r
Http://www.ncbi.nlm.nih.gov/geo/geo2r
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Results

Identification of DEGs in CCs

There were 30 normal tissues and 30 CC tissues in 
GSE74602. There were 28 normal tissues and 28 CC tissues 
in GSE10972. After standardization of the microarray 
results, DEGs (1,626 in GSE10972 and 249 in GSE74602) 
were identified. We used the ‘Draw Venn Diagram’ 
website to identify the common DEGs in GSE10972 and 
GSE74602. A total of 78 commonly up-regulated genes 
(log FC >0) and 130 commonly down-regulated genes were 
detected (Figure 1A,B & Table 1).

KEGG and GO enrichment analyses of DEGs

We used DAVID software to analyze the biological 
classification of DEGs. GO-based biological process 
(BP) analysis indicated that the up-regulated DEGs 
were particularly enriched in the mitotic nuclear 
division, cell division, cell proliferation, anaphase-
promoting complex-dependent catabolic process and G2/
M transition of the mitotic cell cycle, while the down-
regulated DEGs were enriched in muscle contraction, 
bicarbonate transport, cellular response to zinc ion, 
negative regulation of growth, negative regulation of 
leukocyte apoptotic process, and one-carbon metabolic 
process (Table 2). For cell component (CC), the up-
regulated DEGs were mainly enriched in the spindle, 
spindle pole, midbody, nucleus, centrosome, nucleoplasm, 
and the down-regulated DEGs were significantly enriched 
in extracellular exosome, extracellular space, Z disc, 
sarcolemma, extracellular region, extracellular matrix 
(Table 2). In addition, molecular function (MF) analysis 
displayed that the up-regulated DEGs were mainly 
involved in protein kinase binding, chromatin binding, 
protein binding and cyclin-dependent protein serine/
threonine kinase activity, and the down-regulated DEGs 
were particularly involved in carbonate dehydratase 
activity, chemokine receptor binding, transporter activity, 
structural constituent of muscle, chemokine activity 
and chloride channel activity (Table 2). Furthermore, 
KEGG analysis results revealed that the up-regulated 
DEGs were particularly enriched in the cell cycle, oocyte 
meiosis and progesterone-mediated oocyte maturation, 
while the down-regulated DEGs were mainly enriched in 
mineral absorption, bile secretion, nitrogen metabolism, 
proximal tubule bicarbonate reclamation and pancreatic  
secretion.

PPI network and modular analysis

A total of 208 DEGs were included in PPI network analysis. 
There were 171 nodes and 875 edges mapped in the PPI 
network for these common DEGs based on STRING 
database analysis (Figure 1C). The most significant module 
was obtained by using Cytoscape software. It had 34 nodes 
and 536 edges (Figure 1D). Genes with degree ≥10 in the 
module were identified as hub genes. These hub genes were 
all up-regulated. To further study the potential pathway of 
DEGs in the module, GO and KEGG enrichment analyses 
were performed again. The results showed that DEGs 
in module were mainly enriched in the cell cycle, oocyte 
meiosis, progesterone-mediated oocyte maturation, p53 
signaling pathway (Table 3). We choose the top six genes, 
ranked by degree, including CDK1, CCNB1, CDC20, 
AURKA, CCNA2, TOP2A. CDK1 had the highest degree 
with 40, while AURKA, CCNA2 and TOP2A had the lowest 
degree with 37 (Table 4). Some EDGs (such as CCNB1, 
CDK1, CDC20, CCNA2, Table 3) were mainly enriched in 
cell cycle pathway, especially in the G2/M phase (Figure 2).

Survival analysis of selected hub genes

GEPIA (http://gepia.cancer-pku.cn/) was utilized to 
analyze the survival data of the six hub genes (Figure 
3A,B,C,D,E,F). We found that high expression of AURKA, 
CCNA2 and CCNB1 was significantly associated with worse 
survival (P<0.05), but CDC20, CDK1 and TOP2A had no 
significance (P>0.05). And then, UALCAN (http://ualcan.
path.uab.edu/) was used to identify six hub genes survival 
data again (Figure 3G,H,I,J,K,L). The results showed that 
overexpression of CCNA2, CDC20 and CCNB1 would 
lead to poor prognosis (P<0.05), while AURKA, CDK1 
and TOP2A had no significant correlation with prognosis 
(P>0.05). Summing up, the data from the two databases 
(GEPIA and UALCAN) both confirmed that the high 
expression of CCNA2 and CCNB1 had a significant 
correlation with poor prognosis, and the expression of these 
two genes was positively correlated (Figure 4).

Discussion

Despite the significant advances in diagnosis and treatment 
in the last decade, the prevalence of CC is still rising and 
five-year survival is still poor (7). Getting more information 
about the molecular mechanisms of CC is essential for 
the diagnosis and treatment of CC. DNA microarray 

http://gepia.cancer-pku.cn/
http://ualcan.path.uab.edu/
http://ualcan.path.uab.edu/
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Figure 1 Venn diagram, protein-protein interaction (PPI) network and the most significant module of DEGs. 78 DEGs were up-regulated 
in the two datasets (logFC >0) among the mRNA expression profiling sets GSE10972, GSE74602 (A). 130 DEGs were down-regulated in 
the two datasets (logFC <0) among the mRNA expression profiling sets GSE10972, GSE74602 (B). A total of 208 DEGs were included in 
PPI network analysis (C). The most significant module was obtained from PPI network with 34 nodes and 536 edges (D). Upregulated genes 
are marked in light red; downregulated genes are marked in light blue. The PPI network of DEGs was constructed using Cytoscape. DEG, 
differentially expressed gene.
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technology has improved in sensitivity and selectivity in 
recent decades and has become a research tool widely used 
in molecular biology, genome research, cancer diagnosis 
and other fields (8).

In the present study, we obtained 78 commonly up-
regulated genes and 130 commonly down-regulated genes 
by integrating two expression profiling datasets (GSE10972 
and GSE74602) from the GEO dataset. To further 
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Table 1 All 208 commonly differentially expressed genes (DEGs) were detected from two profile datasets, including 130 downregulated genes 
and 78 up-regulated genes in the CRC tissues compared to normal CRC tissues

DEGs Genes name

Upregulated CDH3, SLCO4A1, IQGAP3, TPX2, MMP7, TRIB3, SERPINB5, CCNB1, FOXQ1, MMP3, ASPM, KRT80, LY6G6D, 
CDCA3, TCN1, ANLN, SLC7A5, CXCL2, CCNB2, PRC1, CDK1, PSAT1, PUS7, NFE2L3, CEP55, CEMIP, TOP2A, 
CLDN2, VSNL1, PHLDA1, CXCL1, SAPCD2, TMEM97, MCM4, CXCL8, AURKA, SLC12A2, REG1A, MAD2L1, 
DLGAP5, DPEP1, SOX9, HOXB8, PAICS, HMMR, REG1B, ASCL2, SCD, ETV4, PARPBP, CLDN1, STC2, CDCA7, 
COL11A1, CDC20, CENPN, CTHRC1UHRF1, ITGA2, KIAA0101, TESC, MYC, CCNA2, TTK, CDKN3, NME1, BUB1, 
NCAPG, TRIP13, MMP1, PTTG1, CDCA5, GINS2, UBE2T, CENPF, NUSAP1, CKS2, ESM1

Downregulated PNCK, SPEG, LGALS2, HSPB6, FGL2, OTOP2, DPT, HSPB8, CCL23, MFAP4, ZG16, GUCA2B, WSCD1, CHP2, 
LRRN2, SCARA5, CLCA4, TCEAL2, ATP1A2, MYOM1, FAM129A, AKR1B10, MT1E, TUBAL3, PRKCB, CA4, CNN1, 
SEPP1, SDPR, CTSG, TRPM6, NXPE4, ADAMDEC1, ACKR1PY, CCL19, MYLK, HAND1, SLCO2A1, TMIGD1, 
DNASE1L3, CRYAB, SCIN, CKB, SLC26A3, CD36, CXCL12, PDE5A, MRGPRF, VIP, CA2, FLNC, CHGA, CLEC3B, 
MT1M, PKIB, ANPEP, ADH1A, CEACAM7, METTL7A, FHL1, ADTRP, PRPH, ST6GALNAC6, MT1G, CCL21, ABCA8, 
PDE9A, LMO3, TNFRSF13B, ACTG2, MT1F, KRT24, SLC16A9, BEST2, MYL9, INSL5, SLC51B, AQP8, ZBTB16, 
KCNMB1, DES, FABP4, TNFRSF17, NPTX1, SCGN, CLDN8, MS4A12, FAM107A, PLAC9, MYH11, PGM5, GPX3, 
SLC25A34, VSIG2, RNF150, NPY, ABI3BP, CALD1, GCNT2, SCNN1B, CASQ2, C2orf88, EPB41L3, CDKN2B, LAMA1, 
MAMDC2, RBPMS2, BEST4, CA1, SYNM, C7, TEX11, SLC4A4, C2orf40, SFRP1, PDK4, GFRA2, CFD, TMEM37, 
GPAT3, CPED1, RERGL, CHAIN, SLC51A, GUCA2A, SEMA6A, DHRS9, CA7, AFF3

Table 2 Gene ontology analysis of differentially expressed genes in ovarian cancer

Expression Category Term Count P value FDR

Up-regulated GOTERM_BP_DIRECT GO:0007067~mitotic nuclear division 15 4.10E−12 6.13E−09

GOTERM_BP_DIRECT GO:0051301~cell division 16 3.32E−11 4.96E−08

GOTERM_BP_DIRECT GO:0008283~cell proliferation 11 5.04E−06 0.007534

GOTERM_BP_DIRECT GO:0031145~anaphase-promoting complex-
dependent catabolic process

6 2.71E−05 0.040467

GOTERM_BP_DIRECT GO:0000086~G2/M transition of mitotic cell cycle 7 3.35E−05 0.050149

GOTERM_CC_DIRECT GO:0005819~spindle 7 1.22E−05 0.014011

GOTERM_CC_DIRECT GO:0000922~spindle pole 6 9.79E−05 0.112351

GOTERM_CC_DIRECT GO:0030496~midbody 6 2.16E−04 0.247731

GOTERM_CC_DIRECT GO:0005634~nucleus 39 2.24E−04 0.256455

GOTERM_CC_DIRECT GO:0005813~centrosome 9 4.29E−04 0.491477

GOTERM_CC_DIRECT GO:0005654~nucleoplasm 24 8.62E−04 0.985099

GOTERM_MF_DIRECT GO:0019901~protein kinase binding 9 2.35E−04 0.285395

GOTERM_MF_DIRECT GO:0003682~chromatin binding 8 0.001607924 1.936332

GOTERM_MF_DIRECT GO:0005515~protein binding 51 0.004818525 5.700127

GOTERM_MF_DIRECT GO:0004693~cyclin-dependent protein serine/
threonine kinase activity

3 0.009713212 11.1837

KEGG_PATHWAY hsa04110: cell cycle 11 5.80E−10 6.23E−07

KEGG_PATHWAY hsa04114: oocyte meiosis 8 1.63E−06 0.001746

KEGG_PATHWAY hsa04914: progesterone-mediated oocyte 
maturation

6 9.13E−05 0.09801

Table 2 (continued)
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Table 2 (continued)

Expression Category Term Count P value FDR

Down-
regulated

GOTERM_BP_DIRECT GO:0006936~muscle contraction 8 6.90E−06 0.010446

GOTERM_BP_DIRECT GO:0015701~bicarbonate transport 6 1.02E−05 0.015433

GOTERM_BP_DIRECT GO:0071294~cellular response to zinc ion 4 2.52E−04 0.381119

GOTERM_BP_DIRECT GO:0045926~negative regulation of growth 4 2.52E−04 0.381119

GOTERM_BP_DIRECT GO:2000107~negative regulation of leukocyte 
apoptotic process

3 6.38E−04 0.962218

GOTERM_BP_DIRECT GO:0006730~one-carbon metabolic process 4 0.001002 1.506587

GOTERM_CC_DIRECT GO:0070062~extracellular exosome 36 3.19E−04 0.385946

GOTERM_CC_DIRECT GO:0005615~extracellular space 22 3.98E−04 0.480914

GOTERM_CC_DIRECT GO:0030018~Z disc 6 0.001418 1.704013

GOTERM_CC_DIRECT GO:0042383~sarcolemma 5 0.002947 3.51202

GOTERM_CC_DIRECT GO:0005576~extracellular region 22 0.0037 4.390367

GOTERM_CC_DIRECT GO:0031012~extracellular matrix 8 0.004735 5.587538

GOTERM_MF_DIRECT GO:0004089~carbonate dehydratase activity 4 1.06E−04 0.133058

GOTERM_MF_DIRECT GO:0042379~chemokine receptor binding 3 0.001254 1.561892

GOTERM_MF_DIRECT GO:0005215~transporter activity 7 0.002604 3.218176

GOTERM_MF_DIRECT GO:0008307~structural constituent of muscle 4 0.002914 3.594352

GOTERM_MF_DIRECT GO:0008009~chemokine activity 4 0.004518 5.52181

GOTERM_MF_DIRECT GO:0005254~chloride channel activity 4 0.005935 7.194686

KEGG_PATHWAY hsa04978: Mineral absorption 7 2.26E−06 0.002651

KEGG_PATHWAY hsa04976: Bile secretion 6 3.64E−04 0.425875

KEGG_PATHWAY hsa00910: Nitrogen metabolism 4 4.33E−04 0.506185

KEGG_PATHWAY hsa04964: Proximal tubule bicarbonate reclamation 4 0.001086 1.264063

KEGG_PATHWAY hsa04972: Pancreatic secretion 6 0.001429 1.659887

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes; FDR, false discovery rate.

Table 3 Re-analysis of 34 selected genes via KEGG pathway enrichment

Category Term Count P value Genes

hsa04110 Cell cycle 10 2.78E−13 CCNB1*, CDK1*, MAD2L1, CCNB2, BUB1, TTK, CDC20*, PTTG1, CCNA2*, 
MCM4

hsa04114 Oocyte meiosis 8 7.36E−10 CCNB1*, CDK1*, MAD2L1, CCNB2, BUB1, AURKA*, CDC20*, PTTG1

hsa04914 Progesterone-mediated 
oocyte maturation

6 5.28E−07 CCNB1*, CDK1*, MAD2L1, CCNB2, BUB1, CCNA2*

hsa04115 p53 signaling pathway 3 0.007886 CCNB1*, CDK1*, CCNB2

*, genes were selected hub genes. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 2 Re-analysis of 6 selected genes by KEGG pathway enrichment. CCNB1, CDK1, CDC20, CCNA2 were enriched in the G2/M 
phase. KEGG, Kyoto Encyclopedia of Genes and Genomes.

Table 4 Top six hub genes with higher degree of connectivity

Gene Degree of connectivity Regulated

CDK1 40 Up

CCNB1 38 Up

CDC20 38 Up

AURKA 37 Up

CCNA2 37 Up

TOP2A 37 Up

understand the role of DEGs play in cancer, we performed 
the GO and KEGG pathways. The GO term analysis 
showed that up-regulated DEGs were mainly involved in 
the regulation of cell division and cell proliferation, while 
down-regulated DEGs mainly affected the regulation 
of inflammatory response, cell apoptosis, bicarbonate 
metabolism and muscle function. The regulation of cell 
proliferation is crucial to the growth, development and 
regeneration of eukaryotes, and is considered to be an 
important cause of cancer (9). Bicarbonate transporters 
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Figure 3 Significantly expressed 6 genes in CC patients compared to healthy people. GEPIA (http://gepia.cancer-pku.cn/) was utilized to 
identify 6 hub genes survival data (A-F). UALCAN (http://ualcan.path.uab.edu/) was used to identify 6 hub genes survival data again (G-L). 
CC, colon cancer.
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may alter the rate of cancer cell proliferation by controlling 
the PH of the cytoplasm and extracellular space (10). Festi  
et al. found that cancer metastasis induced TGF-β release 
from bone, which in turn caused myasthenia by reducing 
ca2+ (11). The enriched KEGG pathways of up-regulated 
DEGs included cell cycle, oocyte meiosis and progesterone-
mediated oocyte maturation. The down-regulated DEGs 
were significantly enriched in mineral absorption, bile and 
pancreatic secretion, carbon and nitrogen metabolism. 
Glutamine has multiple roles in cancer as it contributes 
its carbon backbone to the tricarboxylic acid (TCA) cycle 
and is an obligatory nitrogen source for purines and  
pyrimidines (12).

By analyzing the PPI network constructed with DEGs, 
the hub genes with the highest correlation were screened 
out, including CDK1, CCNB1, CDC20, AURKA, CCNA2 
and TOP2A. Cyclin-dependent kinase 1 (CDK1) is a 
member of the serine/threonine-protein kinase family 
that is a vital determinant of mitotic progression. It 
affects the cell cycle from G2 to M by phosphorylating 
various substrates (13). CDK1 is overexpressed in a variety 
of cancers (14,15) and its accumulation in tumors of 
different sites is positively correlated with the degree of 
malignancy (16-23). Apart from the function in the cell 
cycle, CDK1 appears to be involved in protein translation, 
cell morphogenesis, protein secretion, and nuclear  
transport (24). CCNB1 works by switching cells from G2 to 
M but becomes dysfunctional in cancer cells (25). CCNB1 

binds to cyclin-dependent kinase 1 (CDK1) to form a 
complex that phosphorylates the target substrate, and then 
alters cell cycle progression (26). FOXM1 promotes the 
development of human liver cancer cells by transcriptional 
activation of CCNB1, and the high level of CCNB1 is an 
independent indicator of poor prognosis in hepatocellular 
carcinoma patients (27). This occurs not only in HCC, 
but also in breast cancer, head and neck squamous cell 
carcinoma, and esophageal carcinoma (28). The expression 
of the CCNB1 gene in invasive pituitary adenoma was 
significantly higher than that in non-invasive pituitary 
adenoma, indicating that the CCNB1 gene influences the 
invasiveness of pituitary adenoma (29). Cell division cycle 
20 (CDC20) is a key molecule in the cell cycle as it plays 
an important role in mitotic exit (30,31). Overexpression 
of CDC20 may lead to aneuploidy in the tumor cells (32).  
Abnormal levels of CDC20 expression was observed in 
varied human cancer, including cutaneous squamous 
cell carcinoma (33), oral squamous cell carcinoma (34), 
glioblastoma (35), and gastric cancer, bladder cancer (36),  
and cervical cancer (37). The overexpression of CDC20 
may also indicate a poor prognosis in non-small cell 
lung cancer (38) ,  pancreatic cancer (39), estrogen 
receptor-positive breast cancer (40), and hepatocellular  
carcinoma (41). AURKA encodes a serine-threonine 
kinase which controls G2/M conversion (42), centrosome 
maturation (43), and mitotic spindle formation (44). 
Abundant evidence suggests that inhibition of AURKA 
expression can effectively suppress cell proliferation, 
invasion and metastasis in some tumors (45-47). Wen et al.  
confirmed that the loss of AURKA was sufficient to restrict 
myelofibrosis and other Primary myelofibrosis phenotypes 
in vivo (48). Moreover, AURKA is considered to be a valid 
therapeutic target for neuroblastoma (49) and has been 
verified in phase Ⅰ clinical trials (50). CCNA2 accumulates 
during the G1 phase and functions as a crucial regulatory 
factor of the G1/S and G2/M transition by activating 
CDK2 and CDK1 kinases, respectively (51,52). Fischer  
et al. suggested that p53 down-regulates CCNA2 and 
other genes through the p53-p21-dreamcde/ChR pathway 
to block G2/M cell cycle (53). Loukil et al. believed 
that the dysregulation of CCNA2 and RhoA would lead 
cells to escape from niche controls resulting in tumor  
metastasis (54). CCNA2 affects the activity of progesterone 
receptors through multiple mechanisms making it a key 
regulator of progesterone-induced breast cancer (55). 
TOP2A gene is responsible for encoding the ribozyme 
(type 2 topoisomerase, TOP2A) that plays a key role in the 

Figure 4 The correlation between CCNA2 and CCNB1. CCNA2 
and CCNB1 had a positive correlation.
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cell cycle. TOP2A can be used as a biomarker to predict 
the prognosis of a variety of cancers, such as bladder 
urothelial carcinoma (56), pancreatic cancer (57), prostate 
cancer (58) and osteosarcomas (59). TOP2A has become 
a major cellular target for many chemotherapeutic drugs 
and can be used early to identify patients who may be 
benefited from adjuvant or neo-adjuvant targeted therapy 
approaches. Some studies have shown that the change of 
TOP2A is an independent predictive marker of sensitivity 
to anthracyclines in adjuvant therapy for early breast cancer 
(60,61). TOP2A is also used as a marker for the efficacy 
of pegylated lyposomal doxorubicin (PLD) in epithelial 
ovarian cancer (62).

In this study, two GSE datasets were selected to screen 
DEGs and survival analysis was performed in GEPIA and 
UALCAN databases, which reduced the random errors 
that may be caused by a single data set and improved the 
reliability of the results. However, this study also has some 
limitations. First, the small sample size of this experiment 
limits the generalization of the conclusion. Second, this 
result has not been verified in clinical samples due to the 
accessibility of the data. In the following study, we can 
collect clinical samples and conduct molecular experiments 
to verify the six key hub genes we have discovered. In 
addition, more experiments can be conducted to clarify the 
upstream regulatory pathways and downstream mechanisms 
of key differential genes.

In conclusion, there were significant differences in 
expression levels of CDK1, CCNB1, CDC20, AURKA, 
CCNA2 and TOP2A between normal and CC tissues. The 
expression levels of CCNA2 and CCNB1 were negatively 
correlated with the survival time of patients. CCNA2 and 
CCNB1 may be potential biomarkers and therapeutic targets 
for CC.
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