Introduction

Radiomics is concerned with the high-throughput extraction of large amounts of quantitative features whose subsequent analysis and selection can be incorporated in clinical decision-making. Radiomics complements, facilitates, and accelerates the advancement towards cancer precision medicine, as it is able to (I) non-invasively characterize the overall tumor accounting for heterogeneity; (II) produce prognostic and/or predictive biomarker value derived from routine, standard of care imaging data as-is; and (III) allow for a fast, low-cost, and repeatable means for longitudinal monitoring (1,2). Head and neck cancer presents a unique set of diagnostic and therapeutic challenges, including but not limited to the complex regional anatomy, the minute scale of critical structures, the variable appearance of primary and recurrent tumors, significant anatomic changes related to tumor response, and high intratumoral heterogeneity that varies depending on anatomic site.

In turn, radiomics holds the potential to address these barriers to personalized therapeutics. Contrast-enhanced computed tomography (CT), magnetic resonance (MR), and positron emission tomography (PET) imaging are routinely acquired during the diagnosis and staging process in head and neck cancer, and the immense data volume gathered from multiple imaging modalities in existing clinical datasets can greatly facilitate exploratory radiomic analysis. Also, the heterogeneous composition of head and neck cancers can be captured non-invasively, which can serve as an essential adjunct to clinical decision-making.
In addition, radiomics can provide important day-to-day information regarding rapid anatomic change and tumor response during the course of treatment.

However, several key components are necessary to transition radiomics in head and neck cancers from exploratory studies to large-scale implementation as a clinical toolset. We first present an introductory overview of the radiomics workflow, texture analysis methods, and available software infrastructure. We then review key developments in head and neck cancer radiomics followed by a discussion of unmet challenges in its logistical and clinical application.

The radiomics workflow

To realize clinical application, an efficient series of iterative processes is required for reproducible and consistent extraction of radiomics data (Figure 1). This “radiomics workflow” begins with acquisition of high quality images with a standardized protocol. Segmentation of the tumor is then performed, followed by feature extraction from the defined tumor region. The extracted features that demonstrate the best performance, stability, or other defining metric are then selected for incorporation towards clinical applications (3).

An overview of texture analysis methods and available software infrastructure for radiomics exploration

Methods for texture analysis in head and neck cancers are more or less the same as those used in other organ sites. These include first- and second-order texture methods as well as various transform-based methods. The most “direct” features are those based simply on intensity values within a region of interest (ROI). Similar but unique features
may also be extracted from histograms of intensity values and Gaussian functions fitted to these histograms. Other “direct” features may be calculated from the shape of the ROI. Texture features in the head and neck are based on the same parent matrices that are utilized in other sites. Examples of these include the gray-level co-occurrence matrix (GLCM), the gray level run length matrix (GLRLM), the neighborhood intensity difference matrix (NIDM), neighborhood gray-level dependence matrix (NGLDM), and the intensity size-zone matrix (ISZM) (4-9). Other feature extraction methods are based on filters such as Fourier transform, Gabor transform, Laplacian of Gaussian filter (LoG), and multiscale wavelet decompositions (10-13). After processing the ROI according to the parent matrix or filter method, features such as coarseness, business, correlation, entropy, and energy are calculated. Details of these individual features are available in their respective references, and due to their multitude and complexity, will not be delineated in this article.

In addition to texture analysis methods, there exist multiple open-source, in-house developed, and commercial software solutions that facilitate the exploration and development of radiomics in head and neck cancer. A prime example of available open-source software is the Imaging Biomarker Explorer (IBEX) by Zhang et al., described as an “open infrastructure software platform that flexibly supports common radiomics workflow tasks such as multimodality image data import and review, development of feature extraction algorithms, model validation, and consistent data sharing among multiple institutions.” (14). IBEX is compatible with CT, PET, and MR modalities, and is available at http://bit.ly/IBEX_MDAnderson. MazDa is another open-source solution for texture analysis that has been validated through multi-institutional studies (15). This software is built primarily for magnetic resonance imaging (MRI) texture analysis and supports various feature selection methods for model generation. MazDa is available at http://www.eletel.p.lodz.pl/programy/mazda/index.php?action=mazda. CGITA is yet another open-source texture analysis tool, built in the MATLAB environment. The software supports numerous heterogeneity indices, user-defined calculations, and batch processing with a focus on molecular imaging. CGITA supports CT, PET, and MR images and is available at http://code.google.com/p/cgita (16).

Beyond open-source software tools, a number of groups have also developed in-house tools for radiomic analyses, most often in the MATLAB environment, but these softwares are not publicly available to our knowledge (17-21). One such example is a modified version of Computational Environment for Radiotherapy Research (CERR) used for texture analysis.

Lastly, numerous commercial solutions for radiomic analyses are also emerging. For instance, TexRAD is a commercial software which uses a LoG special filter to delineate fine, intermediate, and coarse textures in a ROI for subsequent analysis. This software contains various decision support tools for thoracic and gastrointestinal imaging and has also demonstrated applicability in head and neck cancer textural analysis (22).

Novel applications of texture analysis methods and the emergence of new software tools have both spurred on developments in radiomics for head and neck cancer.

A review of recent developments in radiomics for head and neck cancer

Specific applications for texture analysis and radiomics in head and neck tumors have, to date, demonstrated exciting promise in several distinct arenas. We elaborate on the preliminary applications of these techniques in the following areas for head and neck cancer:

(I) Tumor segmentation and pathologic classification;

(II) Risk stratification, as prognostic and/or predictive biomarker(s);

(III) Monitoring of alteration in normal tissue as a sequela of radiotherapy dose deposition.

A summary of the mentioned studies in this section can be found in the Table S1.

Radiomics for tumor segmentation and classification

Textural analysis has demonstrated preliminary evidence suggesting clinical utility in the classification of and segmentation process for head and neck cancers (Table 1).

For instance, a number of studies have sought to classify head and neck cancers by human papillomavirus (HPV) status with textural analysis. Buch et al. investigated the use of texture analysis to distinguish between HPV(+) and HPV(-) status in 40 patients with primary oropharyngeal squamous cell carcinomas on contrast-enhanced CT (CE-CT) images. They identified three textural features (histogram median and entropy and GLCM entropy) that could make the distinction with statistical significance and concluded that textural analysis has the potential to be used as an adjunct to evaluate HPV status in squamous cell...
Table 1: Studies on radiomics for segmentation and classification

<table>
<thead>
<tr>
<th>Authors (study)</th>
<th>Publication date</th>
<th>Modality</th>
<th># of patients</th>
<th>Anatomic site, if specified</th>
<th>Analyzed endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raja et al. (23)</td>
<td>Sep 2012</td>
<td>CT</td>
<td>21</td>
<td>Oral cavity</td>
<td>Tumor grade classification</td>
</tr>
<tr>
<td>Buch et al. (17)</td>
<td>Jul 2015</td>
<td>CT</td>
<td>40</td>
<td>Oropharynx</td>
<td>HPV status</td>
</tr>
<tr>
<td>Fujita et al. (24)</td>
<td>Jan 2016</td>
<td>CT</td>
<td>46</td>
<td>Oropharynx (25); larynx (17); hypopharynx (5)</td>
<td>HPV status</td>
</tr>
<tr>
<td>Yu et al. (26)</td>
<td>Mar 2009</td>
<td>FDG-PET/CT</td>
<td>20</td>
<td>–</td>
<td>Normal vs. abnormal tissue classification</td>
</tr>
<tr>
<td>Yu et al. (27)</td>
<td>Oct 2009</td>
<td>FDG-PET/CT</td>
<td>10</td>
<td>Oropharynx and nasopharynx</td>
<td>Normal vs. abnormal tissue classification</td>
</tr>
<tr>
<td>Vallieres et al. (25)</td>
<td>Oct 2013</td>
<td>FDG-PET</td>
<td>67</td>
<td>–</td>
<td>HPV status; loco-regional failure; distant metastasis</td>
</tr>
<tr>
<td>Fruehwald-Pallamar et al. (28)</td>
<td>Nov 2013</td>
<td>MRI</td>
<td>38</td>
<td>Parotid</td>
<td>Benign vs. malignant status; tumor type differentiation</td>
</tr>
<tr>
<td>Yang et al. (29)</td>
<td>Dec 2014</td>
<td>MRI</td>
<td>15</td>
<td>Parotid</td>
<td>Parotid vs. surrounding tissue differentiation</td>
</tr>
<tr>
<td>Brown et al. (15)</td>
<td>May 2015</td>
<td>DW-MRI</td>
<td>26 (training)</td>
<td>Thyroid</td>
<td>Thyroid nodule classification</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18 (validation)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jansen et al. (21)</td>
<td>Jan 2016</td>
<td>DCE-MRI</td>
<td>19</td>
<td>Oropharynx</td>
<td>Local control; local failure</td>
</tr>
<tr>
<td>Park et al. (30)</td>
<td>Feb 2016</td>
<td>MRI</td>
<td>27</td>
<td>Oropharynx</td>
<td>Tumor type differentiation</td>
</tr>
<tr>
<td>Fruehwald-Pallamar et al. (31)</td>
<td>Feb 2016</td>
<td>MRI</td>
<td>100</td>
<td>–</td>
<td>Benign vs. malignant status</td>
</tr>
</tbody>
</table>

carcinomas (17). A follow-up study by Fujita et al. sought to distinguish the HPV status of 46 patients with non-oropharyngeal carcinoma using texture analysis extracted from CE-CT images. They identified three features demonstrating statistical significance after false discovery rate (FDR) correction (GLCM contrast, GLCM correlation and law L8). Consequently, they suggested that there are morphologic feature differences based on HPV status even in non-oropharyngeal cancer (OPC) patients (24). Exploring beyond CE-CT, Vallieres et al. aimed to evaluate whether features derived from fludeoxyglucose-positron emission tomography (FDG-PET) could be used as non-invasive biomarkers of HPV status. The study, including 67 patients with head and neck squamous cell carcinoma (HNSCC) and known HPV status, demonstrated that multivariate models built via logistic regression (LR) and support vector machine (SVM) using five features could reliably classify HPV status [area under curve (AUC) of 0.64 and 0.72 for LR and SVM, respectively] and had the potential to predict treatment failure (AUC 0.66) (25).

In addition to classification methodologies, segmentation (in particular, distinguishing between normal and abnormal tissue) has been another application of textural analysis for head and neck cancers. For instance, Yu et al. conducted a study examining 20 patients with head and neck cancer with 20 matched controls and found that neighborhood gray-tone difference matrix (NGTDM) features including PET coarseness, PET contrast, and CT coarseness extracted from co-registered FDG-PET/CT images yielded good discriminatory performance. Their multivariate model, constructed via a decision tree-based K-nearest neighbor (DT-KNN) classifier, was able to successfully discriminate between normal and abnormal ROIs [receiving operator characteristic area under the curve (ROC Az) of 0.95±0.007, Az90 of 0.087±0.003]. It was found that the combination of PET and CT features outperformed either PET or CT...
features individually in discriminatory ability. In addition, they found that features based on the NGTDM and SGLDM (spatial gray level dependence method) could classify ROIs with comparable accuracy to that of a human expert, suggesting that implementation of such analyses at the voxel level could lead to improvement in the accuracy of automated segmentation in head and neck cancer (26). To that end, Yu et al. published on such an implementation titled “co-registered multimodality pattern analysis segmentation system” (COMPASS) for ten head and neck cancer patients. They found that COMPASS outperformed other simpler PET-based thresholding methods for tumor segmentation and yielded contours that were quantitatively and qualitatively similar to those created manually by expert radiation oncologists (specificity 95%±2%, sensitivity 90%±12%) (27). In addition to studies that broadly examined segmentation of head and neck cancers, other studies have sought to segment tissue in specific anatomic regions, as Raja et al. aimed to do with regards to the buccal mucosa subsite of the oral cavity (23).

Much like the aforementioned studies performed in the CT and PET modalities, numerous investigations focused on the MR imaging modality have applied textural analysis towards classification and segmentation processes in head and neck cancer. Some of these MR imaging based studies (28-31) that differentiate between benign and malignant status and amongst different types of head and neck masses will not be elaborated upon in this text, but relevant findings and their statistical significance can be found in the Table S1.

MR imaging merits a distinct interest in radiomics. While CT Hounsfield units represent a standard physical phenomena, the dynamic range of information possible with distinct MRI sequences may allow greater imaging flexibility (in terms of voxel and subvoxel physiologic parameters) as well as the potential for multi-parametric texture/radiomics dataset acquisition in a single imaging series. Therefore, texture analysis of advanced MR sequences has generated interest for further investigation. For instance, in a multi-institutional study focused on preoperative stratification of thyroid tumors using diffusion-weighted (DW) MRI, Brown et al. reported that an algorithm constructed using linear discriminant analysis (LDA) with t21 features yielded an ROC AUC 0.97 (sensitivity 92%, specificity 96%) in a training dataset of 26 patients and correctly classified 89% of tumors in an 18 patient independent validation dataset (15). As expected, a significant difference in the ADC was observed between benign and malignant lesions, but ADC alone was not as effective in classification (AUC 0.73, sensitivity 70%, specificity 63%) as the model generated from radiomic analysis of the diffusion-weighted echo-planar imaging (DW-EPI) sequence. Furthermore, texture analysis of quantitative and semi-quantitative MRI data has also shown potential value. In a recent study of 19 HNSCC patients with pretreatment and intra-treatment dynamic contrast-enhanced (DCE), or DCE-MRI available, Jansen et al. analyzed the parametric maps of K_e and v_e, which are measures of tumor vascularity. It was reported that the energy feature from the v_e map was significantly higher on intra-treatment scans (0.41±0.22 vs. 0.30±0.11; P<0.04). The findings suggest that texture analysis may provide complementary information in addition to standard DCE-MRI measurements that have been shown to be predictive of treatment response in head and neck cancer patients (21,32,33).

Radiomics as prognostic and predictive biomarkers

Another application of radiomics is the development and refinement of radiomic signatures that can improve upon prognostic and/or predictive models for specific cancers, including those of the head and neck (Table 2). Heading the effort in this area, Aerts et al. conducted a radiomic analysis of 440 features extracted from a pre-treatment CT database of 1,019 patients with either lung or head and neck cancer. The features described tumor phenotype in four categories (tumor image intensity, shape, texture, and wavelet decomposition) and the strongest radiomic features from each of the four feature groups were identified to create a signature: statistics energy, shape compactness, gray level non-uniformity, and wavelet (HLH) gray level non-uniformity. A multitude of features were found to have association with oncologic outcomes in independent datasets of lung cancer and head and neck cancer patients. Of interest, a radiomic signature that was trained using a dataset of non-small cell lung cancer patients was found to have impressive translatability in two independent head and neck cancer validation datasets. They also suggested that the prognostic significance of the features can capture underlying intratumor heterogeneity and is associated with gene-expression patterns (34).

In a subsequent study, the aforementioned radiomic signature was externally validated on an independent cohort of oropharyngeal squamous cell carcinoma patients (542 patients) (37). The signature validated well,
demonstrating good model fit and preservation of discrimination (Harrell’s c-index 0.628; P=2.72e-9). Interestingly, it was also found that the signature retained discriminatory ability in the presence of visible CT artifacts, which are often present in head and neck CT sequences due to dental hardware (Harrell’s c-index 0.647; P=5.35e-6).

In yet another application of radiomics as a predictive marker, Zhang et al. analyzed the predictive value of texture and histogram features in 72 HNSCC patients treated with induction chemotherapy. In multivariate Cox regression analysis incorporating both clinical and imaging variables, they found that in addition to expected factors such as tumor volume and N stage, primary mass entropy [hazard ratio (HR) =2.10 for each 0.5-unit increase; P=0.36] and histogram skewness (HR =3.67 for each 1.0-unit increase; P=0.009) were independent predictors of overall survival (OS) (22).

A common challenge in radiomics is to define a non-redundant set of imaging biomarkers from the vast amount of extracted features. An investigation by Parmar et al. examined the role of consensus clustering in reducing redundant features into a few robust and compact feature clusters. Upon analysis of features extracted from pre-treatment CT images from four independent lung and head and neck cancer cohorts (878 patients total), they showed that lung and head and neck radiomic clusters are significantly associated with patient survival and tumor stage. In addition to demonstrating prognostic value to clinical endpoints, their results revealed that clustering and the prognostic radiomic features are cancer specific (35).

Machine-learning methods have also been investigated for prognostic value as biomarkers for head and neck cancers. From two independent head and neck cohorts totaling 196 patients, Parmar et al. investigated 13 feature selection methods and 11 machine-learning classification methods chosen for simplicity, efficiency, and popularity in the literature. Specifically, they identified three classifiers and feature selection methods that demonstrated high performance and stability for predicting 3-year OS in head and neck cancer, suggesting that these machine learning methods should be the starting point for radiomics-based prognostic analyses due to their consistency. Identifying optimal machine-learning methods for radiomic analysis is a prerequisite to the development of a robust, clinically-applicable radiomic workflow. These findings provide valuable information for methodology selection in future radiomics investigations. Such methods could allow for improvements in cancer biomarker identification and personalized medicine in oncology (36).

In addition to CT, applying radiomics for prognostic and/or predictive purposes for head and neck cancer has been investigated in the PET, MR, and histopathologic imaging modalities as well. For example, one study by El Naqa et al. examined shape and textural features as well as intensity volume histogram metrics extracted from pre-treatment PET images on nine head and neck cancer patients. Using the highest predictive features, they were able to construct a two-metric LR model predicting OS with an AUC of 1.0 (20). In addition, certain studies aim

Table 2 Studies on radiomics for prognostic and predictive biomarkers

<table>
<thead>
<tr>
<th>Authors (study)</th>
<th>Publication date</th>
<th>Modality</th>
<th># of patients</th>
<th>Anatomic site, if specified</th>
<th>Analyzed endpoint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang et al. (22)</td>
<td>Dec 2013</td>
<td>CT</td>
<td>72</td>
<td>Oral cavity (28); larynx (21); hypopharynx (14); oral cavity (8)</td>
<td>Overall survival</td>
</tr>
<tr>
<td>Aerts et al. (34)</td>
<td>Jun 2014</td>
<td>CT</td>
<td>474 (training); 545 (validation)</td>
<td>Lung or head and neck</td>
<td>Median survival</td>
</tr>
<tr>
<td>Parmar et al. (35)</td>
<td>Jun 2015</td>
<td>CT</td>
<td>878</td>
<td>Lung or head and neck</td>
<td>Survival; tumor stage; HPV status</td>
</tr>
<tr>
<td>Parmar et al. (36)</td>
<td>Dec 2015</td>
<td>CT</td>
<td>101 (training); 95 (validation)</td>
<td>Lung or head and neck</td>
<td>Overall survival</td>
</tr>
<tr>
<td>Leijenaar et al. (37)</td>
<td>Aug 2015</td>
<td>CT</td>
<td>542</td>
<td>Oropharynx</td>
<td>Overall survival</td>
</tr>
<tr>
<td>El Naqa et al. (20)</td>
<td>Jun 2009</td>
<td>FDG-PET</td>
<td>9</td>
<td>Oropharynx</td>
<td>Overall survival</td>
</tr>
<tr>
<td>Dang et al. (38)</td>
<td>Jan 2015</td>
<td>MRI</td>
<td>16</td>
<td>Oropharynx</td>
<td>p53 status</td>
</tr>
</tbody>
</table>

CT, computed tomography; HPV, human papillomavirus; FDG-PET, fludeoxyglucose-positron emission tomography; MRI, magnetic resonance imaging.
to predict p53 status, as a positive status is associated with poor prognosis in certain subsets of HNSCC patients (39-41). Dang et al. demonstrated that MRI texture analysis could predict p53 status in oropharyngeal squamous cell carcinoma with 81.3% accuracy (P<0.05). In a retrospective study of 16 patients, they identified and incorporated seven significant texture features into a predictive model. The variables featured significantly were those derived from post-gadolinium T1W1, T2W1, and ADC map, noted to be possibly due to differences in vascularity between p53(+) versus p53(−) status (38).

In addition to PET and MR imaging, histopathological imaging coupled with textural analysis has demonstrated prognostic potential as well. For instance, a study of 53 cases of HNSCC was characterized by quantitative histologic texture analysis by generating a 2D planar tessellation of the tumor and then analyzing the reconstructed image using spatial statistics. Ultimately, mean nuclear area was found to be significant predictor of lymph node metastasis (42).

Radiomics for longitudinal monitoring of therapy response in non-tumor tissues

Several groups have compiled data indicative of the potential capacity for radiomics/texture techniques to afford longitudinal monitoring of tumor response. However, in addition to tumor imaging, the same approaches can readily be utilized to detect normal tissue physiologic alteration (Table 3). This is particularly beneficial for head and neck cancers, which exhibit significant anatomical changes with radiotherapy doses delivered to functional normal tissues. As an instance of this application, texture analysis has been applied to CT images to assess change in parotid gland structure during radiotherapy. In this study, a general decrease in parotid tissue complexity and heterogeneity was observed at different time points of radiotherapy. Also, volume and mean intensity variation were found to be correlated with pre-treatment dosimetric parameters, suggesting a relationship between dose plan and structural variation estimated after radiotherapy (44). The same group further investigated whether early variations of textural parameters [i.e., mean intensity and fractal dimension (FD)] could predict parotid shrinkage at the end of treatment. The study examined textural parameters extracted from CT images of 42 parotids of 21 nasopharyngeal cancer patients treated with IMRT. Using discriminant analysis based on volume and fractal dimensionality, they were able to predict final parotid shrinkage with 71.4% accuracy (43).

Unmet challenges for head and neck cancer radiomics

With respect to head and neck cancer radiomics, we first discuss the technical challenges inherent to the young field of big data, followed by the clinical challenges inherent to cancer medicine. The unmet technical challenges present today in the field of head and neck cancer radiomics are mostly similar to those in other disease sites. Technical challenges in radiomics for head and neck cancer include requirements for processing large amounts of high-quality imaging data, reproducibility in data processing, an assessment of radiogenomic associations, a suitable informatics infrastructure, and standardized reporting guidelines.

Radiomics inherently depends on large amounts of high quality imaging data. Results are highly dependent on segmentation, which can be a time-intensive process if carried out manually. However, manual segmentation adds a level of quality assurance and confidence in delineation that is not matched by auto-segmentation solutions, especially in the head and neck.

Reproducibility of results is another unmet need in this field. Not only do radiomic features need to demonstrate reproducibility in the same patient through test-retest studies, but these features need to be evaluated across different device manufacturers, imaging acquisition parameters, and institutions. Several studies have been done on test-retest variability of radiomic features in other...
There are also several challenges unique to cancer medicine that must be addressed in radiomics. In clinical

From a practical standpoint, integration of radiomic
data into the clinical workflow will require facilitation
by software. An electronic health record (EHR) software
and picture archiving communication system (PACS) that
integrate radiometric analysis with all pertinent imaging
metadata and clinical information will greatly enhance both
the feasibility of a radiomics workflow and the potential
value of acquired images. With respect to creating a
standard methodology for analyzing and reporting radiomic
data, two national collaborative efforts have been created
to address this issue: the Quantitative Imaging Network
(QIN), sponsored by the National Cancer Institute (NCI),
and the Quantitative Imaging Biomarker Alliance (QIBA),
sponsored by the Radiological Society of North America
(RSNA) (55,56). In addition to these efforts, the NIH
has required a plan for data sharing in all major research
funding applications since 2003; ideally these efforts will
spur sharing of datasets and methodologic transparency, in
addition to increasing access to direct software resources
developed for radiomics applications.

There are also several challenges unique to cancer
medicine that must be addressed in radiomics. In clinical

There is a need for radiomic signatures with specific
oncologic function (i.e., defining oncologic pathophysiology
such as metastasis). The complex management of each and
every cancer patient also mandates radiomic signatures
specific for clinical parameters tell-tale for different phases
of treatment (i.e., pre- vs. post-procedure, during and
after chemotherapy, and at different timepoints during
radiation therapy). In addition, we must also refine clinical
endpoints specific to oncology. For instance, in addition
to investigating general outcomes like OS, radiomic
signatures specific to the nodal metastasis probability would
be clinically useful towards clinical management. In order
to realize cancer-specific radiomics, we need extensive
prospective multicenter trials and external validation to
begin standardizing and refining radiomic signatures.

To that end, one fruitful and practical approach may
be to leverage imaging data from ongoing and proposed
randomized clinical trials which contain a well-defined
imaging component. Validations should be done against
completely independent large datasets, preferably from
other institutions. A prime example of this process gaining
ground is demonstrated in the efforts of Leijenaar et al. (37),
whose group externally validated a prognostic radiomic
signature on an independent cohort of oropharyngeal
squamous cell patients. In addition, recent investigations
revealing that radiomic signatures have translational
capacity between cancer types, yet retain cancer-specific
cluster features, are highly promising towards the effort to
standardize and refine radiomic signatures (34,35). Finally,
another means to accelerate developments in head and
neck cancer radiomics takes the form of formal challenges
posed to the research community to solve defined issues.
The Medical Image Computing and Computer Assisted
Interventions (MICCAI) challenge is one such challenge
that bridges international solutions to user feedback. Their

Another major unmet goal specific to head and neck
radiomics is in the radiogenomic assessment of head and
neck cancers. In other disease sites including brain, breast,
lung, and liver, studies have shown various associations
between genomic expression patterns and radiographic
features for a number of cancers (49–54). Such findings are
supportive of the central hypothesis of radiomics that the
genotype of a tumor is associated with the radiographic
phenotype of a tumor. Researchers in other sites have
leveraged genomic information from The Cancer Genome
Atlas (TCGA) in combination with imaging data from The
Cancer Imaging Archive (TCIA) for such studies. In the
head and neck space, a radiogenomic assessment of the
TCGA head and neck cohort is underway by the authors of
this review.

From a practical standpoint, integration of radiomic
data into the clinical workflow will require facilitation
by software. An electronic health record (EHR) software
and picture archiving communication system (PACS) that
integrate radiometric analysis with all pertinent imaging
metadata and clinical information will greatly enhance both
the feasibility of a radiomics workflow and the potential
value of acquired images. With respect to creating a
standard methodology for analyzing and reporting radiomic
data, two national collaborative efforts have been created
to address this issue: the Quantitative Imaging Network
(QIN), sponsored by the National Cancer Institute (NCI),
and the Quantitative Imaging Biomarker Alliance (QIBA),
sponsored by the Radiological Society of North America
(RSNA) (55,56). In addition to these efforts, the NIH
has required a plan for data sharing in all major research
funding applications since 2003; ideally these efforts will
spur sharing of datasets and methodologic transparency, in
addition to increasing access to direct software resources
developed for radiomics applications.

There are also several challenges unique to cancer
medicine that must be addressed in radiomics. In clinical

There is a need for radiomic signatures with specific
oncologic function (i.e., defining oncologic pathophysiology
such as metastasis). The complex management of each and
every cancer patient also mandates radiomic signatures
specific for clinical parameters tell-tale for different phases
of treatment (i.e., pre- vs. post-procedure, during and
after chemotherapy, and at different timepoints during
radiation therapy). In addition, we must also refine clinical
endpoints specific to oncology. For instance, in addition
to investigating general outcomes like OS, radiomic
signatures specific to the nodal metastasis probability would
be clinically useful towards clinical management. In order
to realize cancer-specific radiomics, we need extensive
prospective multicenter trials and external validation to
begin standardizing and refining radiomic signatures.

To that end, one fruitful and practical approach may
be to leverage imaging data from ongoing and proposed
randomized clinical trials which contain a well-defined
imaging component. Validations should be done against
completely independent large datasets, preferably from
other institutions. A prime example of this process gaining
ground is demonstrated in the efforts of Leijenaar et al. (37),
whose group externally validated a prognostic radiomic
signature on an independent cohort of oropharyngeal
squamous cell patients. In addition, recent investigations
revealing that radiomic signatures have translational
capacity between cancer types, yet retain cancer-specific
cluster features, are highly promising towards the effort to
standardize and refine radiomic signatures (34,35). Finally,
another means to accelerate developments in head and
neck cancer radiomics takes the form of formal challenges
posed to the research community to solve defined issues.
The Medical Image Computing and Computer Assisted
Interventions (MICCAI) challenge is one such challenge
that bridges international solutions to user feedback. Their

Another major unmet goal specific to head and neck
radiomics is in the radiogenomic assessment of head and
neck cancers. In other disease sites including brain, breast,
lung, and liver, studies have shown various associations
between genomic expression patterns and radiographic
features for a number of cancers (49–54). Such findings are
supportive of the central hypothesis of radiomics that the
genotype of a tumor is associated with the radiographic
phenotype of a tumor. Researchers in other sites have
leveraged genomic information from The Cancer Genome
Atlas (TCGA) in combination with imaging data from The
Cancer Imaging Archive (TCIA) for such studies. In the
head and neck space, a radiogenomic assessment of the
TCGA head and neck cohort is underway by the authors of
this review.

From a practical standpoint, integration of radiomic
data into the clinical workflow will require facilitation
by software. An electronic health record (EHR) software
and picture archiving communication system (PACS) that
integrate radiometric analysis with all pertinent imaging
metadata and clinical information will greatly enhance both
the feasibility of a radiomics workflow and the potential
value of acquired images. With respect to creating a
standard methodology for analyzing and reporting radiomic
data, two national collaborative efforts have been created
to address this issue: the Quantitative Imaging Network
(QIN), sponsored by the National Cancer Institute (NCI),
and the Quantitative Imaging Biomarker Alliance (QIBA),
sponsored by the Radiological Society of North America
(RSNA) (55,56). In addition to these efforts, the NIH
has required a plan for data sharing in all major research
funding applications since 2003; ideally these efforts will
spur sharing of datasets and methodologic transparency, in
addition to increasing access to direct software resources
developed for radiomics applications.

There are also several challenges unique to cancer
medicine that must be addressed in radiomics. In clinical

There is a need for radiomic signatures with specific
oncologic function (i.e., defining oncologic pathophysiology
such as metastasis). The complex management of each and
every cancer patient also mandates radiomic signatures
specific for clinical parameters tell-tale for different phases
of treatment (i.e., pre- vs. post-procedure, during and
after chemotherapy, and at different timepoints during
radiation therapy). In addition, we must also refine clinical
endpoints specific to oncology. For instance, in addition
to investigating general outcomes like OS, radiomic
signatures specific to the nodal metastasis probability would
be clinically useful towards clinical management. In order
to realize cancer-specific radiomics, we need extensive
prospective multicenter trials and external validation to
begin standardizing and refining radiomic signatures.

To that end, one fruitful and practical approach may
be to leverage imaging data from ongoing and proposed
randomized clinical trials which contain a well-defined
imaging component. Validations should be done against
completely independent large datasets, preferably from
other institutions. A prime example of this process gaining
ground is demonstrated in the efforts of Leijenaar et al. (37),
whose group externally validated a prognostic radiomic
signature on an independent cohort of oropharyngeal
squamous cell patients. In addition, recent investigations
revealing that radiomic signatures have translational
capacity between cancer types, yet retain cancer-specific
cluster features, are highly promising towards the effort to
standardize and refine radiomic signatures (34,35). Finally,
another means to accelerate developments in head and
neck cancer radiomics takes the form of formal challenges
posed to the research community to solve defined issues.
The Medical Image Computing and Computer Assisted
Interventions (MICCAI) challenge is one such challenge
that bridges international solutions to user feedback. Their
challenges have sought solutions applicable to obstacles in cancer imaging, including those of head and neck cancer. The potential for radiomics to realize personalized cancer care has been demonstrated by numerous investigations. The field and its applicability to oncology promise to develop with time, but only if we direct our efforts to specific oncologic function and oncologic outcomes, with external validation through multi-institutional collaborative efforts.

Moving the field forward

The data summarized herein suggest cumulatively that there is great potential for radiomics and texture analysis techniques to improve upon multiple aspects of the tumor assessment, risk stratification, and outcome evaluation aspects in head and neck cancer therapy. However, at present the vast majorities of these studies are primarily exploratory, or at best, seek to perform model refinement and validation methods. At present, there is a fundamental need for several key efforts as an oncologic community which will solidify the role of radiomics in texture analysis techniques in a manner that can realize clinical utilization.

First, there needs to be a global effort towards standardization. This effort requires standardization not only of individual radiomics algorithms, but also of specific acquisition parameters. Fundamentally, performance quality assurance and quality improvement must be utilized such that a specific imaging acquisition protocol matched with a specific texture and analytic protocol (see Figure 1) can be shown to perform within an estimated error range as a diagnostic, predictive, and evaluative tool. It is only when such data are well defined that we will truly be able to implement radiomics and texture analytic techniques in the clinic.

Individual work at the level of algorithm standardization is already underway, with the recent publication by Parmar et al. (57) serving as an excellent model. In this seminal head and neck radiomics manuscript investigating the quality assurance/quality improvement methodology, Parmar et al. carefully and rigorously evaluated the process variability in their radiomics development process, discovering that the majority of performance variation could be identified in the classification process. Only by similar efforts in investigating the relative performance characteristics and error estimators in each individual step of the radiomics process will we achieve reliable and reproducible tools which can scale across institutions and imaging data sets. Additionally, individual image acquisition protocols should be standardized in a similar manner. For example, it is unclear at present whether there is comparability between individual predictive/prognostic features in inter-/intra-sequence MRI data sets, and between similar textual features in CT or PET-CT datasets. Ideally, multimodality data sets should be interrogated to determine whether similar and/or related textual features can be representative across imaging modalities.

Finally, the bulk of our efforts should be directed towards determining the underlying mechanistic underpinnings of the observed clinical findings demonstrated by radiomics and texture analyses. For example, it is unclear specifically which features are individually representative of what underlying physiological processes drive tumor response or normal tissue injury changes observed in the affirmation data sets. While the leading candidates represent measures of tumor heterogeneity, or vascular perfusion differentials across tumor lines, it is imperative that future efforts derived at clinical, radiologic, histopathologic, or genomic characterization interrogate the underlying molecular physiologic processes which drive the meso/macro-scale features observed in clinical datasets. One of the most compelling examples of how to approach such studies is that of Panth et al. (58), who grew colon cancer-derived xenografts with doxycycline-inducible (GADD34) cells in the flanks of nude mice. As GADD34 overexpression decreases hypoxic fraction, changes in gene function and hypoxia could be observed through serial CT imaging over time. Radiomics analyses were performed at 40 kVp and again at 80 kVp for validation, before and after radiotherapy. These data showed not only reproducible, robust changes seen at multiple kVp levels, but that specific temporal kinetic differences could be observed with regard to genotypic and phenotypic radiomics signatures. Work of this quality and scope will need to be undertaken in head and neck specific models to interrogate the mechanistic underpinnings of radiomics in vivo.

Conclusions

In summary, we believe that the preponderance of evidence suggests that radiomics is in fact revealing real information regarding tumor and normal tissue information that is above and beyond visual analysis. However, these quantitative methods require further hardening of the underlying methodologic processes, as well as a greater coupling of quantitative imaging phenomena to the underlying biologic
processes. Our hope is that these needs can be met sooner than later.

Acknowledgements

Funding: Dr. Fuller received/receives grant and/or salary support from: the National Institutes of Health National Cancer Institute's Paul Calabresi Clinical Oncology Award Program (K12 CA088084-06) and Clinician Scientist Loan Repayment Program (L30 CA136381-02) and Head and Neck SPORE Career Development Award (P50CA097007-10); the National Institutes of Health National Institute of Dental and Craniofacial Research research grant (R56DE025248-01,R01DE025248-01); a General Electric Healthcare/MD Anderson Center for Advanced Biomedical Imaging In-Kind Award; an Elekta AB/MD Anderson Department of Radiation Oncology Seed Grant; the Center for Radiation Oncology Research at MD Anderson Cancer Center seed grant program; and the MD Anderson Institutional Research Grant Program. This work was supported in part infrastructure support by National Institutes of Health Cancer Center Support (Core) Grant CA016672 to The University of Texas MD Anderson Cancer Center. Dr. Fuller has received travel funding from Elekta AB.

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

References

Texture analysis can perform presurgical stratification of thyroid nodules with high sensitivity and specificity, with multiple modality texture analysis (MTRA). Correctly classified 88% of ROIs from 15 patients from an independent validation dataset.

Using discriminant analysis based on volume and fractal dimensionality, final MRI using highest predictive features from IVH metrics, shape and texture features extracellular retention PET-DCE-MRI, and a two matrix LR model predicting overall survival with an AUC of 0.15–0.5, 35%–76% of HNSCC, 16–29%.

Identified three textural features that demonstrated significant differences after FDR correction in distinguishing DCE-MRI vs. HN-MRI in non-OPC patients.

Texture analysis on CT images of oral cancers involving buccal mucosa revealed Texture analysis may provide complementary information in addition to standard MRI. Successful parotid segmentation achieved for all 42 post-RT MRIs from 15 surviving patients.

Histological features and patient survival. Volume and mean intensity variation were volume histogram; LR, logistic regression; Rs, Spearman’s rank correlation; DCE, dynamic contrast-enhanced; HNC, head and neck squamous cell carcinoma; HR, hazard ratio; GLCM, gray-level co-occurrence matrix; FD, fractal dimension; SVM, support vector machine; SUV, standard uptake value; NGTDM, neighborhood gray-tone-difference matrix; ROI, region of interest; DT, decision tree; KNN, K-nearest neighbor; COMPASS, co-registered multimodality pattern analysis segmentation system; ADC, apparent diffusion coefficient; NSCLC, non-small cell lung cancer; IMRT, intensity-modulated radiation therapy; LRFS, loco-relapse free survival; OS, overall survival.

Using highest predictive features from IVH metrics, shape and texture features extracellular retention PET-DCE-MRI, and a two matrix LR model predicting overall survival with an AUC of 0.15–0.5, 35%–76% of HNSCC, 16–29%.

Using highest predictive features from IVH metrics, shape and texture features extracellular retention PET-DCE-MRI, and a two matrix LR model predicting overall survival with an AUC of 0.15–0.5, 35%–76% of HNSCC, 16–29%.

Histological features and patient survival. Volume and mean intensity variation were volume histogram; LR, logistic regression; Rs, Spearman’s rank correlation; DCE, dynamic contrast-enhanced; HNC, head and neck squamous cell carcinoma; HR, hazard ratio; GLCM, gray-level co-occurrence matrix; FD, fractal dimension; SVM, support vector machine; SUV, standard uptake value; NGTDM, neighborhood gray-tone-difference matrix; ROI, region of interest; DT, decision tree; KNN, K-nearest neighbor; COMPASS, co-registered multimodality pattern analysis segmentation system; ADC, apparent diffusion coefficient; NSCLC, non-small cell lung cancer; IMRT, intensity-modulated radiation therapy; LRFS, loco-relapse free survival; OS, overall survival.

Using discriminant analysis based on volume and fractal dimensionality, final MRI using highest predictive features from IVH metrics, shape and texture features extracellular retention PET-DCE-MRI, and a two matrix LR model predicting overall survival with an AUC of 0.15–0.5, 35%–76% of HNSCC, 16–29%.

Histological features and patient survival. Volume and mean intensity variation were volume histogram; LR, logistic regression; Rs, Spearman’s rank correlation; DCE, dynamic contrast-enhanced; HNC, head and neck squamous cell carcinoma; HR, hazard ratio; GLCM, gray-level co-occurrence matrix; FD, fractal dimension; SVM, support vector machine; SUV, standard uptake value; NGTDM, neighborhood gray-tone-difference matrix; ROI, region of interest; DT, decision tree; KNN, K-nearest neighbor; COMPASS, co-registered multimodality pattern analysis segmentation system; ADC, apparent diffusion coefficient; NSCLC, non-small cell lung cancer; IMRT, intensity-modulated radiation therapy; LRFS, loco-relapse free survival; OS, overall survival.

Using discriminant analysis based on volume and fractal dimensionality, final MRI using highest predictive features from IVH metrics, shape and texture features extracellular retention PET-DCE-MRI, and a two matrix LR model predicting overall survival with an AUC of 0.15–0.5, 35%–76% of HNSCC, 16–29%.

Histological features and patient survival. Volume and mean intensity variation were volume histogram; LR, logistic regression; Rs, Spearman’s rank correlation; DCE, dynamic contrast-enhanced; HNC, head and neck squamous cell carcinoma; HR, hazard ratio; GLCM, gray-level co-occurrence matrix; FD, fractal dimension; SVM, support vector machine; SUV, standard uptake value; NGTDM, neighborhood gray-tone-difference matrix; ROI, region of interest; DT, decision tree; KNN, K-nearest neighbor; COMPASS, co-registered multimodality pattern analysis segmentation system; ADC, apparent diffusion coefficient; NSCLC, non-small cell lung cancer; IMRT, intensity-modulated radiation therapy; LRFS, loco-relapse free survival; OS, overall survival.

Using discriminant analysis based on volume and fractal dimensionality, final MRI using highest predictive features from IVH metrics, shape and texture features extracellular retention PET-DCE-MRI, and a two matrix LR model predicting overall survival with an AUC of 0.15–0.5, 35%–76% of HNSCC, 16–29%.

Histological features and patient survival. Volume and mean intensity variation were volume histogram; LR, logistic regression; Rs, Spearman’s rank correlation; DCE, dynamic contrast-enhanced; HNC, head and neck squamous cell carcinoma; HR, hazard ratio; GLCM, gray-level co-occurrence matrix; FD, fractal dimension; SVM, support vector machine; SUV, standard uptake value; NGTDM, neighborhood gray-tone-difference matrix; ROI, region of interest; DT, decision tree; KNN, K-nearest neighbor; COMPASS, co-registered multimodality pattern analysis segmentation system; ADC, apparent diffusion coefficient; NSCLC, non-small cell lung cancer; IMRT, intensity-modulated radiation therapy; LRFS, loco-relapse free survival; OS, overall survival.

Using discriminant analysis based on volume and fractal dimensionality, final MRI using highest predictive features from IVH metrics, shape and texture features extracellular retention PET-DCE-MRI, and a two matrix LR model predicting overall survival with an AUC of 0.15–0.5, 35%–76% of HNSCC, 16–29%.

Histological features and patient survival. Volume and mean intensity variation were volume histogram; LR, logistic regression; Rs, Spearman’s rank correlation; DCE, dynamic contrast-enhanced; HNC, head and neck squamous cell carcinoma; HR, hazard ratio; GLCM, gray-level co-occurrence matrix; FD, fractal dimension; SVM, support vector machine; SUV, standard uptake value; NGTDM, neighborhood gray-tone-difference matrix; ROI, region of interest; DT, decision tree; KNN, K-nearest neighbor; COMPASS, co-registered multimodality pattern analysis segmentation system; ADC, apparent diffusion coefficient; NSCLC, non-small cell lung cancer; IMRT, intensity-modulated radiation therapy; LRFS, loco-relapse free survival; OS, overall survival.