Solamargine inhibits proliferation and promotes apoptosis of CM-319 human chordoma cells through suppression of notch pathway

Junqi Liu, Zhenlin Wang, Cong Xu, Yan Qi, Qiuhang Zhang


Background: Solamargine (SM), which represents a natural steroid alkaloid glycoside compound and a cytotoxic agent, has been proved to enhance the sensitivity of lung cancer cells to tumor necrosis factors (TNFs). In this study, we aimed to investigate the roles and mechanisms of SM in chordoma.
Methods: Cell viability, proliferation, apoptosis and cell cycle were measured by cell counting Kit-8 (CCK-8) assay, 5(6)-carboxyfluorescein diacetate succinimidyl ester (CFSE) labeling and flow cytometry (FCM), respectively. Western blot and quantitative real-time reverse transcription PCR (qRT-PCR) assays were performed to detect the expressions of related mRNAs and proteins.
Results: The results revealed that SM distinctly suppressed the proliferation of CM-319 cells. SM significantly induced the CM-319 cells apoptosis through up-regulating the expression levels of Caspase-3/8/9. The cell cycle of CM-319 cells was blocked by SM in G1 phase. Moreover, SM could significantly suppress the Notch pathway in CM-319 cells.
Conclusions: In conclusion, SM suppressed the proliferation and enhanced the apoptosis ability of CM-319 cells via suppressing the Notch pathway. The results suggested that SM might be a novel therapeutic agent and supported the utilization of SM in chordoma.