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Dysregulated anaplastic lymphoma kinase (ALK) protein 
expression has been previously reported in non-Hodgkin’s 
lymphoma (NHL) (1). However, it was not until 2007 when 
Soda et al. and others revealed that ALK is constitutively 
activated in some patients with non-small cell lung 
cancer (NSCLC), due to ALK gene rearrangement (2,3). 
In NSCLC, ALK rearrangement results in expression 
of ALK fusion proteins with aberrant ALK signalling 
and oncogenic transformation (2) and occurs in about 
3–5% of the total NSCLCs (4). Currently, the treatment 
strategy of so-called ALK rearranged NSCLC relies on 
selection of an ALK tyrosine kinase inhibitor (TKI). The 
first in class ALK inhibitor crizotinib was developed and 
approved through accelerated drug approval by the US 
Food and Drug Administration (FDA) in 2011 on the basis 
of high response rates in early phase evaluation (5,6) and 
was granted regular approval by US FDA in 2013 based 
on demonstration of superior progression-free survival 
(PFS) and overall response rate (RR) for crizotinib-treated 
patients compared to chemotherapy (7). However, despite 
the significant improvements observed in ALK-rearranged 
NSCLC patients with crizotinib compared to conventional 

cytotoxic chemotherapy, resistance to crizotinib occurs with 
patients often relapsing within 1–2 years (8-10). Several 
second-generation ALK inhibitors have been developed and 
tested in patients who have progressed on treatment with 
crizotinib (11,12). Among these, ceritinib and alectinib were 
recently approved by the FDA for treatment of crizotinib-
resistant ALK-rearranged NSCLC patients (13-15)  
and have also demonstrated clinical efficacy in crizotinib 
naïve patients (16,17) but resistance also occurs to these 
drugs (18,19). The question then is how best to select and 
schedule ALK inhibitors to optimise treatment for ALK 
rearranged NSCLC? To address this requires knowledge of 
ALK TKI resistance mechanisms and how this knowledge 
can be applied in the clinic. A recent study conducted by 
Gainor and colleagues from the group of Dr. Alice T Shaw 
provides new insights into ALK TKI resistance mechanisms 
that has implications for ALK treatment selection in the 
clinic (20). 

Generally, resistance mechanisms to ALK TKIs can be 
classified into two main categories, including on-target 
genetic modifications such as ALK resistance mutations or 
ALK gene amplification and off-target changes including 
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dysregulation of bypass signalling molecules to compromise 
ALK inhibition by ALK TKIs. The off-target resistance 
mechanisms remain poorly understood but currently 
include mutation of several key signalling molecules such as 
EGFR and KRAS and activation of pro-survival signalling 
pathways and hypoxia-induced epithelial-mesenchymal 
transition (EMT) (21). Consequently, combinatorial 
strategies to target ALK alongside an off-target resistance 
mechanism are being tested. For example, crizotinib and 
imatinib (KIT-TKI) or OSI-906 (IGF-1R-TKI) respectively 
for bypass signal-induced resistance to crizotinib mediated 
by X-376 of the KIT and IGF-1R pathways (10,22). To date 
most progress has been made in characterising on-target 
mechanisms that account for about 33% of total crizotinib 
resistance in ALK rearranged NSCLC patients (10). Several 
secondary mutations within the ALK gene in response to 
targeted treatment with either crizotinib or the second-
generation of ALK inhibitors ceritinib and alectinib have 
been identified. At least 11, 3 and 6 different mutations have 
been reported to emerge during treatment with crizotinib, 
alectinib and ceritinib respectively (21) with some mutations 
such as ALK G1202R conferring resistance to crizotinib, 
ceritinib and alectinib (11,19).

Dr. Gainor and colleagues analysed 103 repeat biopsies 
from 83 patients with ALK-rearranged NSCLC who 
had progressed on treatment with one or more ALK 
inhibitors (20). Their results demonstrate a distinct 
spectrum of ALK resistance mutations for different ALK 
inhibitors and that mutations are more frequent following 
exposure to second generation ALK inhibitors. In this study 
crizotinib resistance mutations were confirmed in 11 (20%, 
N=51) specimens from biopsy sites that included pleural 
fluid (31%), liver (22%), and nodal tissue (18%) from 10 
patients. L1196M and G1269A mutations represented the 
most common mutations with a frequency of 7% and 4% of 
the total mutations detected, respectively. Other mutations 
(frequency) detected were C1156Y (2%), G1202R (2%), 
I1171T (2%), S1206Y (2%), and E1210K (2%). Within 
36 crizotinib-resistant specimens pre-confirmed by ALK 
FISH testing as ALK rearranged tumours, 31% of the 
examined specimens were found to have on-target genetic 
alterations contributing to the crizotinib resistance and 3 
(8.3%) specimens demonstrated ALK gene amplification. 
Interestingly, no resistant mutations were concomitant with 
the ALK gene amplification. Changes in ALK resistance 
mutational profile following treatment with the second-

generation ALK inhibitors ceritinib (N=23), alectinib 
(N=17), or brigatinib (N=6) were also examined. The results 
obtained indicate that within the available specimens of 9 
cases of pre-ceritinib/post-crizotinib only 2 (22%) exhibited 
on-target resistance mechanisms, including ALK resistance 
mutation S1206Y and ALK fusion gene amplification. 
Of 24 separate post-ceritinib biopsies (obtained from 23 
ceritinib treated patients), 54% harbored ALK mutations, 
with 17% of the total ALK mutations exhibiting two 
different mutations concomitantly. The G1202R (21%) 
and F1174C/L (16.7%) mutations were most common. Of 
note, a novel ALK G1202del mutation was also identified 
in 8% of specimens. The authors conducted preclinical 
studies to determine the functional consequences of the 
various mutations identified in the clinical cases. Ectopic 
expression of the EML4–ALK G1202del mutant in Ba/
F3 cells suggested that the G1202del ALK mutant confers 
moderate resistance to ceritinib, alectinib, and brigatinib 
with crizotinib potency being less affected. For 17 patients 
treated with alectinib (who had previously received 
crizotinib), 17 alectinib-resistant biopsies were analysed 
and ALK resistance mutations were detected in 9 (53%) 
specimens. Interestingly, the ALK G1202R mutation was 
present in 29% of cases. Detection of the ALK V1180L 
mutation (6%) in response to alectinib was confirmed 
for the first time in an alectinib-resistant patient. Finally, 
for the 7 patients treated with brigatinib, ALK resistance 
mutations were observed in 5 of 7 (71%), where the ALK 
G1202R mutant was detected in three specimens (60%). 

Overall, these data indicate that patients treated with 
second generation ALK inhibitors compared to crizotinib 
as a first generation inhibitor have a higher frequency of 
ALK mutations with the higher resistance conferred by the 
ALK G1202R mutation also representing the most common 
detected mutation. The findings demonstrate that part 
of the mechanism by which dysregulated ALK tumours 
adapt to resist treatment with ALK TKIs relies on the 
potency of ALK inhibition. On exposure to a less potent 
ALK inhibitor (crizotinib) the ALK mutations that emerge 
exhibit moderate resistance capacity. However, the more 
potent second-generation ALK inhibitors are associated 
with a higher frequency of mutations with higher resistance 
capacity such as G1202R. However, it is unclear whether the 
mutation profile that emerges on treatment with a second 
generation ALK TKI is contributed to by prior exposure to 
crizotinib. Thus, the question that remains to be answered 



S241Translational Cancer Research, Vol 6, Suppl 2 March 2017

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2017;6(Suppl 2):S239-S245 tcr.amegroups.com

is whether patients with ALK rearranged NSCLC should be 
treated with second or third-generation ALK inhibitors as 
first line treatment or whether sequencing treatment as 1st, 
2nd and 3rd generation inhibitors would be more beneficial. 
A recent pre-planned interim analysis from the J-ALEX 
clinical trial presented at the 2016 American Society of 
Clinical Oncology (ASCO) Annual meeting demonstrated 
prolonged PFS for treatment with alectinib compared to 
crizotinib in untreated ALK rearranged NSCLC patients 
(median PFS not reached versus 10.2 months; HR: 0.34; 
P<0.0001) (16), and the final data evaluating overall survival 
(OS) might provide more information about which is the 
better sequencing treatment strategy when the patients in 
the “crizotinib treatment arm” are crossed over to alectinib 
treatment when disease progresses. Furthermore, lorlatinib 
a third-generation ALK inhibitor has been found to be 
more effective in a number of patient-derived ceritinib-
resistant cell lines harbouring ALK mutations (20).  
In  another  s tudy  by  Shaw e t  a l . ,  a  pa t ient  wi th 
metastatic ALK  rearranged lung cancer developed 
crizotinib resistance due to a C1156Y ALK mutation. 
The patient did not respond to a second-generation 
ALK inhibitor, but responded to the third generation 
ALK inhibitor, lorlatinib before tumour relapse (23).  
Sequencing analysis revealed a further lorlatinib resistant 
ALK L1198F mutation in addition to C1156Y. The 
L1198F mutation was found to enhance the ALK crizotinib 
binding affinity within ALK and re-sensitise the tumour 
to crizotinib (23). Therefore, the usage of second or the 
third-generation inhibitors as first line treatment in ALK 
rearranged NSCLC patients could be an option. A further 
consideration for ALK inhibitor selection is the type of 
ALK rearrangement and fusion gene. Recent data published 
by Yoshida et al., that compared the differential crizotinib 
response duration among ALK fusion variants established 
using RT-PCR demonstrated ALK fusion variant 1 to be the 
most frequently detected variant (54%) (24). The objective 
response rate (ORR) was 74% and 63% in the variant 1 and 
non-variant 1 groups, respectively and 69% overall. The 
median PFS was significantly longer in patients with variant 
1, 11.0 (95% CI, 6.5–43.0) months than in those with non-
variant 1, 4.2 (95% CI, 1.6–10.2) months, respectively 
(P<0.05) (24). Further investigations evaluating survival 
endpoints for the different specific types of ALK fusions, 

and for the most common mutations, such as L1196M, 
G1269A, C1156Y, G1202R, I1171T, S1206Y, and E1210K 
would be of value to develop optimal clinical algorithms for 
ALK inhibitor selection.

From the aforementioned, it is clear that detection 
of ALK TKI resistance mutations are a critical point in 
determining treatment strategy, although not yet fully 
integrated into routine practice. Repeat biopsy and 
sequencing analysis to assess for the presence and type of 
resistance mutation following treatment with an ALK TKI 
seems set to become the norm. However, tissue biopsy 
specimens are always limited to certain locations and hardly 
reflect the comprehensive molecular signatures of metastatic 
lung cancer, and intratumour heterogeneity. In contrast 
liquid biopsies can be obtained from almost all body fluids, 
thus representing a new source of cancer-derived materials 
to better reflect the nature of tumour at both primary 
and metastatic sites. Detection of circulating tumour cells 
(CTCs), circulating tumour DNA (ctDNA), circulating 
tumour RNA (ctRNA), exosomes, and tumour-educated 
platelets (TEPs) in body fluids samples have potential to 
provide much more information regarding ALK resistance 
mechanisms compared with tissue biopsies. However, due 
to the lower frequency of these markers in body fluids, 
achieving higher detection sensitivity and specificity remains 
technically challenging (25). Table 1 summaries the current 
liquid biopsy strategies for ALK resistance evaluation with 
the observed limitations. Evaluation of intrinsic or acquired 
TKI resistance alterations in patients with ALK rearranged 
NSCLC using liquid biopsy can direct treatment selection 
based on a time specific mutational profile and anticipate 
treatment resistance to second generation ALK inhibitors. 
Additionally, liquid biopsy might overcome the tumour 
heterogeneity limitations of tissue biopsies allowing for the 
detection of acquired compound mutations associated to 
specific TKI resistance (Figure 1).

In summary, despite clinical studies that demonstrate 
better RR and benefits of ALK TKIs in patients with ALK 
rearranged NSCLC, resistance to ALK TKIs remains 
challenging. Better knowledge of the genomic profile of the 
ALK rearranged tumours at first diagnosis and monitoring 
for acquired resistance mechanisms using liquid biopsy 
approaches have potential to optimise ALK TKI and 
sequencing for improved outcomes.
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