
© Pioneer Bioscience Publishing Company. All rights reserved. Transl Cancer Res 2013;2(4):309-319www.thetcr.org

Introduction

The grand simplification of cancer in research until the 
end of twentieth century was that it is a disease of the 
cells. Therefore implying that the disease may be better 
understood by identifying the genetic changes resulting 
in altered proteins that disrupt the cell’s communication 
network causing signals to be garbled, amplified or 
misdirected, hi jacking what was once the normal 
communication to achieve uncontrolled growth of these 
genetically altered cells. However, the recent avalanche of 
information reveals that cancer is actually a dynamic milieu 
of neoplastic cells and a complex array of non-neoplastic 
cells that are recruited from the neighboring local or distant 
host tissue to the tumor microenvironment establishing a 
favorable niche for the growth of complex tissues that we 
call tumors (Figure 1) (1-3). These non-neoplastic cells that 
constitute the tumor microenvironment facilitate tumor 

development by providing extracellular matrices, cytokines, 
growth factors, mechanical cues, and vascular networks for 
nutrient and waste exchange (4). More than 80% of the 
tumor burden is contributed by derivatives of epithelial 
tissues, called Carcinomas where the non-neoplastic tumor 
microenvironment accounts for 30-99% of the tumor mass. 
Figure 2 elucidates the localization of different cell types 
that exist in the tumor stroma of histological specimens 
of Cholangiocarcinoma (5). Thus in the clinical setting it 
becomes mandatory to understand mechanisms to block the 
complex crosstalk between cancer cells, their non-neoplastic 
host cells and the surrounding extracellular matrix that 
constitute their local environment.

T h e  s i g n i f i c a n t  a b n o r m a l i t i e s  i n  t h e  t u m o r 
microenvironment and its cells, such as an acidic pH, 
altered redox potential, up-regulated proteins and 
hyperthermia have led to the idea of using stimulus-responsive 
nanopreparations in antitumor applications (6). This approach 
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Figure 1 The primary tumor microenvironment. The primary tumor microenvironment consists of tumor cells surrounded by normal 
epithelial cells, mesenchymal stem cells (MSC), endothelial progenitor cells (EPCs) and various bone marrow derived cells (BMDC). 
Presence of heterogeneous cells and their secreted soluble factors, signaling molecules, extracellular matrix and mechanical cues with in the 
tumor microenvironment promote neoplastic transformations, support tumor growth and invasion (Modified from www.Cernostics.com)

Figure 2 Phenotyping the tumor reactive stroma in Cholangiocarcinoma (CCA). Immunohistochemistry of different markers to characterize 
cells and structural components of the tumor reactive stroma in CCA: A. cancer-associated fibroblasts [CAFs] (α-SMA); B. extracellular 
matrix [ECM] (fibronectin); C. inflammatory cells (CD45); D. tumor-associated macrophages [TAM] (CD206, arrows); E. lymphatic 
endothelial cells (Podoplanin); F. vascular endothelial cells (CD34). Histological specimens were derived from surgical liver resection of 
patients with Intrahepatic cholangiocarcinoma (iCCA). Original magnification: 200×, adapted from (5)
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is being further extended to design nanopreparations that 
respond to external stimuli like magnetic field, light and 
ultrasound for controlled drug release, improved drug 
internalization and regulation of the intracellular drug fate, 
resulting in an enhanced tumor targeting and antitumor 
effect Figure 3 (6-8). Nanotechnology has thus become the 
emerging field of stimulus-responsive nanoformulations 
termed “smart drugs” in cancer which (I) utilizes the 
altered tumor environment to facilitate accumulation of the 
systemically delivered chemotherapy at the tumor site and 
(II) enables specific targeting of the tumor and/or tumor 
microenvironment to achieve tumor growth inhibition (9) 
and enhanced therapeutic efficacy (10).

Vascular pathophysiology and EPR effect in 
cancer nanotherapeutics

One of the six hallmarks that have been proposed during 
the development of cancer is sustained angiogenesis (11,12) 
where the tumors develop their own neovasculature from 
the existing host microenvironment for nourishment (13).  
These  blood vesse ls  produced within tumors  by 
chronically activated angiogenesis and an unbalanced mix 
of proangiogenic signals are typically aberrant (14,15). 
These structural abnormalities result in a leaky vasculature 
and a poor lymphatic drainage system (16) which causes 
a differential interstitial pressure (17). The 10-100 nm 

Figure 3 Stimuli responsive nanopreparations as emerging drug delivery and controlled drug release systems. The various stimuli are 
applied as following: (I) External stimulus such as temperature (T) and pH is utilized to facilitate formation of nanoparticles; (II) External 
stimuli such as magnetic field, ultrasonic, light, and temperature allows for remotely controlling the precision of spatial and temporal drug 
release; (III) acidic tumor pH (6.5-7.2) is utilized to trigger drug release and/or reverse shielding of nanoparticles at tumor site thereby 
enhancing tumor cell uptake of nanoparticulate drugs; and (IV) intracellular environments such as low pH in endo/lysosomal compartments 
and high redox potential in cytoplasm are utilized to improve intracellular drug release inside tumor cells adapted from (8)
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nanoparticles serving as delivery systems for drugs and small 
molecules like DNA/RNA utilize this difference in pressure 
to preferentially accumulate and be retained in tumors 
unlike the free drugs or small molecules that rapidly undergo 
renal filtration (18,19). This phenomenon of enhanced 
permeability and retention (EPR) effect has shown that the 
retention time of drugs packed in nanoparticles is ten times 
higher than that of free drugs at the tumor site (20). Hence, 
this EPR effect attributed to the leaky tumor vasculature is 
considered as a boon for drug-delivery systems within the 
nanosize range as described in Figure 4.

Role of altered pH dynamics in the tumor 
microenvironment in nanotechnology

Tumors contain oxygenated and hypoxic regions (23) and 
therefore unlike normal cells that derive the bulk of their ATP 
through mitochondrial oxidative phosphorylation, most cancer 
cells by what is referred to as ‘Warburg effect’ transition to 
the less efficient method of glycolysis for energy production, 
releasing as large amount of lactic acid (24). This method for 
energy production provides several advantages to the tumor 
including adaptation to a low oxygen environment and the 
acidification of the surrounding microenvironment, which 

promotes tumor invasion and suppresses immune surveillance 
(25). Nanotechnology utilizes this phenomenon to design 
pH-sensitive nanoparticles that are stable at a physiologic pH 
of 7.4, but degraded to release active drug in target tissues in 
which the pH is less than physiologic values , such as in the 
acidic environment (6.7-6.9) of tumor cells (26-29). Currently, 
nearly all successful cancer chemotherapy regimens use a 
paradigm of multiple drugs given simultaneously. This type of 
multicomponent chemotherapy has been first demonstrated in 
nanoscale delivery vehicles by the O’Halloran group where two 
cytotoxic agents are co-encapsulated into 100 nm liposomes 
that are stable in serum but release their drug in the low-pH 
endosome, potentially leading to synergistic drug activities (30). 
This system is continuously being improvised to encapsulate 
new drug combinations and covalently attached targeting 
ligands to direct drugs specifically to the tumor site. Recently 
it has also been shown that nanoparticles composed of weak 
polybases when exposed to a pH gradient tend to accumulate 
preferentially and increase in size/swell when in the low pH 
regions by a phenomenon termed “pH phoresis”. The tumor 
tissues provide the required low pH microenvironment where 
the polybase nanoparticles upon accumulation increase in size 
and get caught in the fenestrated tumor vasculature, facilitating 
enhanced delivery of drugs to the tumor site (31). 

Figure 4 Vascular pathophysiology and EPR effect in nanoparticle delivery. Scheme representing the microvasculature of normal (A) and tumor 
(B) tissue. Poorly developed leaky vasculature allows 10-100 nm sized nanoparticles to extravasate and gets accumulated with in solid tumor. 
Within tumor depending on their sustained drug release properties, nanoparticles keep releasing active drug for significantly longer time point. 
Nanoparticles cannot leak through the intact blood vessels, so it considerably decreases the systemic toxicity. Scanning electron microscopic 
(SEM) imaging showing simple, organized arrangement of arterioles, capillaries, and venules in normal rat carotid sinus (C), on the contrary 
xenograft of human tumor in nude mice depicts abundant microvasculature lacking the hierarchy of blood vessels (D) SEM adapted from (21,22)
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Controlled release in the tumor 
microenvironment by nanocarriers simulates 
metronomic therapy

Traditional chemotherapeutic regimens incorporate the 
“maximum tolerated dose” in the treatment protocols 
as a standard of care (32). This results in a concomitant 
overt systemic toxicity which has made it mandatory for 
the imposition of rest periods between cycles of therapy—
a practice that not only involves re-growth of tumor cells, 
but also growth of selected clones resistant to the therapy 
reverting to the growth of more malignant metastatic 
tumors with no therapeutic response. A new philosophy 
expected to overcome the problems encountered by the 
conventional treatment regimens that has been introduced 
by Judah Folkman and Robert Kerbel (33,34) and termed 
‘metronomic therapy’ by Douglas Hanahan (35,36) involves 
a schedule which consists of low doses of chemotherapeutic 
drugs administered without extended rest periods  
(Figure 5). The novelty in this concept is in the targeting of 

the tumor microenvironment, particularly the endothelial 
cells which are more sensitive to the consistent low 
dose drug administration than tumor cells, inhibiting 
tumor angiogenesis eventually resulting in tumor growth  
inhibition (37). Upon literature survey we found the 
endothelial cell types to be more sensitive than the tumor 
cells types to the anticancer drug, Topotecan. Metronomic 
dosing was more effective in killing the endothelial cells in 
comparison to the tumor cell types (Table 1). Interestingly, 
this sustained delivery and controlled release preferentially at 
the tumor/tumor microenvironment site is a challenge which 
drives the design of various drug delivery strategies that strive 
to revolutionize the way drugs exert their actions. Nanosized 
drug carriers due to their small size, relatively high surface 
area, influence on biodistribution, their stabilizing effect on 
therapeutic agents and their ability to make drugs available 
for intravascular delivery at the tumor site facilitate sustained 
release of active drug over a period of time simulating the 
action of metronomic therapy in cancer (44). 

Figure 5 A comparison of the effect of Chemotherapy and metronomic therapy in cancer. A schematic representation elucidating 
the importance of metronomic dosing over traditional maximum tolerated dosing (MTD) in intermittent chemotherapy. Traditional 
chemotherapeutic regimen is often associated with systemic toxicity and recurrence of tumor after several days of treatment. However, in 
metronomic therapy, fractionated MTD for a period of time, is less toxic and is effective in tumor growth inhibition and results in remission 
of the disease
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Tumor microenvironment and prodrug therapy

Prodrugs are derivatives of drug molecules that can 
undergo a transformation by an enzyme, chemical or 
environmental stimuli to release the active parent drug 
in vivo (45). A drug which is highly cytotoxic or has a 
short half-life in circulation may now be administered 
in an inactive state as a nanoformulation or “prodrug” 
targeted to the tumor/tumor microenvironment via tumor 
specific molecules. Upon reaching its destination, the 
tumor environment facilitates its’ conversion to an active 
form. This tumor-activated prodrug therapy functions 
by attacking both the tumor and stroma cells through a 
“bystander effect” without selectively deleting the target-
producing cells, therefore further minimizing resistance 
and toxicity. Matrix metalloproteinase-2 (MMP-2) is a 
stroma-derived MMP belonging to the type IV collagenase 
family playing a critical role in the degradation of 
basement membranes and the extracellular matrix. The 
overexpression of matrix metalloproteinase-2 in melanoma 
has been shown in a number of preclinical as well as clinical 
investigations. A water-soluble maleimide derivative of 
doxorubicin, incorporating a matrix metalloproteinase-
2-specific peptide sequence developed by Mansour et al. 
has been shown to have high affinity for the cysteine-34 
position of circulating albumin (46). The albumin-bound 
form of the polymer-drug conjugate was efficiently 
cleaved by the matrix metalloproteinase-2 enriched in 
the tumor stroma liberating free doxorubicin. The tumor 
microenvironment pH and redox potential were other 
stimuli that triggered drug release triggers at the tumor 
site (47). Cisplatin, an antiproliferative agent being used 

in the treatment of cancer since the 1970’s is known 
for its’ severe side effects that include nephrotoxicity, 
neurotoxicity (ototoxic), and emetogenic (nausea and 
vomiting) has been shown by researchers from Lippard’s 
and Farokhzad’s group at MIT and Harvard respectively 
for safer and more effective prostate cancer therapy in 
vivo by the targeted delivery of a cisplatin prodrug. Being 
highly hydrophilic (water soluble) the half-life of cisplatin is  
43 minutes with approximately 1/4th being eliminated within 
the first 24 hours (90% renal clearance). Encapsulation of 
the hydrophilic drug in a hydrophobic nanoparticle not 
only makes it an inactive prodrug but increases it’s half-
life in circulation by 5 times and when coated with prostate 
specific membrane antigen (PSMA) facilitates targeted 
delivery of cisplatin to prostate cancer cells (48).

Preferential targeting of nanoparticles helps 
overcome multiple drug resistance (MDR) in 
cancer

MDR continues to remain a major unresolved challenge in 
clinical cancer chemotherapy (49). In the clinic, multidrug 
resistance occurs in over 50% of patients, whose cancer 
relapses, accounting in large part for the high mortality 
associated with cancer. Solid tumors exist in an intimate 
relationship with the surrounding microenvironment, 
and it is the dynamics of this heterogeneous and ever 
changing ecosystem that contributes to the initiation and 
progression of the disease (50-54). In addition to initiating 
and supporting the tumorigenic process, a permissive 
microenvironment can also affect the sensitivity of tumor 

Table 1 Response of human tumor and endothelial cells to Topotecan administered as conventional chemotherapy and low dose metro-
nomic therapy. A literature survey representing the Topotecan (TPT) IC50 values for most commonly used tumor and endothelial cell 
types revealed that endothelial cell types are more sensitive to TPT concentrations compared to different tumor cell type

Cell type Cell line IC50 (µM) References

Breast cancer MCF-7 0.218 (38)

Prostate cancer PC-3 0.0935±0.028 (39)

Non small cell lung cancer NCI-H460 0.598±0.025 (40)

Glioma U251 1.2 (41)

Liver tumor MRP4/HepG2 1.159±0.168 (42)

Ovarian cancer HeyA8 0.025* (MD =0.024) (43)

Primary endothelial cells HUVEC 0.012* (MD =0.001) (43)

Endothelial cells EA.hy926 0.13 (41)

*In support of metronomic therapy, Merritt and coworkers [2009] have reported that while metronomic dosing (MD) doesn’t affect 

the tumor cell lines, it increases the sensitivity of in Human Umblical Vein Endothelial Cells (HUVECs) to TPT
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cells to drug treatment (55). The three-dimensional 
structure of the tumor tissue and the composition and 
organization of the extracellular matrix (ECM) and stromal 
components contribute to marked gradients in drug 
concentration, increased interstitial fluid pressure and 
metabolic changes, all of which may alter the resistance 
of tumor cells to cytotoxic agents and radiation (56-61). 
The tumor microenvironment/architecture has been 
shown to significantly contribute to the emergence of 
therapeutic resistance and thus the need for targeting and 
manipulating this complex symbiotic interplay to overcome 
MDR (62). The tumor microenvironment induced 
multidrug resistance occurs via (I) cell-cell and cell-ECM 
adhesion; (II) cell communication; (III) alterations in 
mechanosensing; (IV) Phenotypic transitions; and (V) 
protective quiescence (63). One of the most common 
mechanisms that has been shown to confer simultaneous 
resistance to different drugs relies on drug efflux from 
cancer cells mediated by ATP-binding cassette (ABC) 
transporters (64). A novel mechanism for the acquisition 
of drug resistance by tumor endothelial cells (TECs) in a 
tumour microenvironment to paclitaxel through greater 
mRNA expression of multidrug resistance 1, which encodes 
P-glycoprotein, as compared with normal endothelial cells 
has also been reported. High levels of vascular endothelial 
growth factor in tumour-conditioned medium were found 
to be responsible for the upregulated P-glycoprotein 
expression (65). Nanoparticles with affinity for specific 
receptors (66) in the tumor/tumor microenvironment when 
entering the cells, are usually enveloped by endosomes 
via receptor-mediated endocytosis, thereby bypassing the 
recognition of P-glycoprotein, one of the prominent ABC 
transporters mediating multidrug resistance, resulting in 
the increased intracellular concentration of drugs (67). 
Human serum albumin encapsulated paclitaxel (also known 
as Abraxane) is a clinically successful candidate that has 
been used to target the microenvironment utilizing the 
high affinity of a 60-kDa glycoprotein, gp60 located on 
the surface of endothelial cells displays for the albumin-
paclitaxel complex (68,69). The albumin-paclitaxel 
complex when released into the subendothelial space is 
further enriched by another glycoprotein named SPARC 
(secreted protein, acidic and rich in cysteine) that binds to 
albumin with high affinity and has a significant homology 
to gp60 (70). We have identified Galectin-1, as a tumor 
vasculature associated protein (71) that is further specifically 
upregulated in endothelial cells in response to radiation 
exposure (72). It also serves as a major receptor for the 

33 a.a. antiangiogenic peptide Anginex (73) and is thus 
a promising candidate for radiation enhanced delivery 
of chemotherapy via Anginex conjugated drug loaded 
nanoparticles. This multifunctional approach utilizing 
three modalities viz.: radiation, antiangiogenesis (anginex) 
and nanosized chemotherapy that is being developed in our 
laboratory to preferentially target the solid tumor is expected 
to provide a safer and more effective cancer chemoradiation 
therapeutic application (72). Multifunctional nanoparticle 
formulations designed to allow the drug to bypass the efflux 
of pump transporters or combination delivery and drug 
efflux modulation simultaneously (74) are now being actively 
investigated facilitating personalized and tailored cancer 
treatment (75). These multifunctional nanoparticles are 
also designed with additional capabilities like targeting 
ligand and image contrast enhancement that allow the 
nanoparticle to be used for theranostic imaging where 
therapy is combined with diagnosis, particularly suitable 
for disease as complex as cancer. The αvβ3-integrin receptor 
is predominantly used for targeting vascular endothelial 
cells, as it is elevated in these cells during angiogenesis. 
Imaging agents targeting αvβ3 have been developed for 
MRI (76-79), PET (80) and fluorescence imaging (80-84). 
A tumor-homing peptide CREKA (Cys-Arg-Glu-Lys-Ala) 
that forms a distinct meshwork specifically in the tumor 
stroma synthesized by Simberg and colleagues, has been 
shown to facilitate accumulation of a CREKA-conjugated 
superparamagnetic iron oxide (SPIO) nanoparticles in both 
tumor vessels and stroma, resulting in intravascular clotting 
in tumor blood vessels. This intravascular clotting further 
attracts more nanoparticles into the tumor, amplifying the 
targeting. Such multifunctional targeted-SPIO nanoparticles 
allow for, (I) high specificity for tumor homing; (II) enhanced 
magnetic resonance imaging (MRI) in tumor; (III) physical 
blockade of tumor vessels by local embolism. The clotting 
caused by CREKA-SPIO nanoparticles in tumor vessels is 
expected to also improve tumor detection by optical imaging 
techniques (85). Figure 6 shows a scheme for the design of 
multifunctional nanoparticles.

Conclusions and perspective

The emerging body of literature reveals that tumors are 
not merely collections of disorganized tumor cells but 
maladjusted living entities composed of neoplastic cells 
and surrounding non-neoplastic cells, termed the tumor 
microenvironment that are recruited by their neoplastic 
neighbors to provide essential support for the progressive 
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parasitic growth of the neoplasm. There is compelling 
evidence to indicate appearance of major structural and 
functional changes at the interface between tumor cells 
and adjacent host cells in the cancer microenvironment 
during the growth and progression of the neoplasm. A 
better understanding of this intricate ecosystem comprising-
the complex nature of tumor cell, host cell interactions, as 
well as cell-ECM interactions inside a tumor, has led to 
improved cancer therapies. The emerging field of cancer 
nanotechnology exploits these unique characteristics of the 
tumor microenvironment and tumor angiogenesis to design 
new drug delivery systems that specifically target anti-cancer 
drugs to tumors. National Cancer Institute has taken recent 
initiatives to harness the power of nanotechnology to radically 
change the way cancer is currently being diagnosed, imaged 
and treated. The nanotechnology market is expected to be 
worth $1 trillion by 2015 as predicted by the US National 
Science Foundation. A combination of classical chemo and 
radiotherapy with anti-inflammatory and antiangiogenic 
strategies targeting the tumor microenvironment is required 
to reach long-term efficiency. With the growing number 
of clinical trials of nanotherapies associated with different 
targeting strategies and combined with radiotherapy or with 
conventional chemotherapy, provide adequate evidence of 
the success of these therapies in the future (86). Nanocarriers, 

particularly multifunctional systems are thus expected to 
exist as the main therapeutic arsenal in the near future and 
play a major role in changing the very foundations of cancer 
diagnosis, treatment and prevention.
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