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Immunotherapy has brought, arguably, the biggest advances 
in cancer treatment in recent years. Cancer immunotherapy 
can be divided into active and passive approaches. For 
example, vaccines are an active immunotherapy where 
the patient’s own immune system is mobilized to fight 
malignancy. On the other hand, passive immunotherapy 
relies on administering the effector arms of the immune 
system like antibodies or T cells. Antibodies, like Herceptin, 
are directed against tumor-associated receptors expressed 
on tumor cells and appear to interfere with the pro-growth 
signaling mediated by the targeted receptor (1). Kadcyla is 
an antibody-drug conjugate version of Herceptin showing 
significant clinical benefits; this drug is cytotoxic to cells 
bearing the targeted receptor (2). Newest in the line of anti-
cancer antibodies are those interfering with T cell inhibitory 
cellular signaling, such as anti-PD1 and anti-CTLA4 
antibodies (3). These antibodies have been approved for 
treatment of at least eight different malignancies thus far.

The engineered re-targeted T cells represent an adoptive 
immunotherapy approach that may potentially keep up the 
pace with development of other above-mentioned clinically 
successful immunotherapies. For example, the US Food and 
Drug Administration (FDA) has just approved a therapy 
based on chimeric antigen receptor (CAR) T cells redirected 
to CD19 antigen in acute lymphoblastic leukemia (ALL) (4).  
While very active in hematologic malignancy, the CAR T 
cells approach faces many obstacles in its application to 
the treatment of solid tumors (5), including primary brain 
tumors like glioblastoma (GBM).

The report by Krenciute et al. entitled “Transgenic 
expression of IL15 improves anti-glioma activity of IL13R α2-
CAR T cells but results in antigen loss variants” describes an 
attempt at developing CAR T cells therapy for GBM (6). 
GBM, a solid tumor, is a high-grade astrocytoma with 
a dismal prognosis. Its clinical management is based on 
invasive and toxic treatments: surgery, radiation therapy, 
and chemotherapy (7), with the most recent addition of TT-
fields to the armamentarium (8). These authors generated 
CAR T cells directed to an interleukin 13 receptor alpha 
2 (IL-13RA2) based on a fusion of single-chain antibody 
against IL-13RA2 with transmembrane region of CD28 
and a CD28.ζ endodomain. The target for these CAR T 
cells, IL-13RA2, was discovered in GBM as the first plasma 
membrane receptor over-expressed in the vast majority of 
patients with GBM, but not normal brain (9,10). Multiple 
pre-clinical and clinical studies have taken advantage of 
the attractive properties of IL-13RA2 in designing various 
immunotherapeutic approaches, including vaccines, targeted 
cytotoxins, drug conjugates, and adoptive immunotherapy 
(11-14). IL-13RA2 also segregates with tumor-initiating or 
glioma stem-like cells (GSCs) (15). Further, IL-13RA2 is 
over-expressed predominantly in a mesenchymal group of 
GBM, and it is linked to patients’ survival (16). Moreover, 
the GBM tumor cells that inducibly lost the IL-13RA2 
exhibited lesser tumorigenic potential, supporting the idea 
of using aggressive approaches even when solely targeting 
this receptor (17). 

The science of including CAR T cells into current anti-
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cancer treatment modalities has been evolving during the 
past decades. The experience gained from multiple pre-
clinical and clinical studies surmounted several important 
obstacles facing successful implementation of adoptive 
immunotherapy. Among many factors to consider are 
tumor heterogeneity, the immunosuppressive tumor 
microenvironment, barriers to delivery of the transferred 
T cells to tumors, and ability of T cells to proliferate/
persist and exert efficient oncolytic activity (5). Noteworthy 
methodologic issues are related to the use of autologous T 
cells, their extensive engineering, and subsequent expansion 
for clinical use (5). Nevertheless, multiple groups have been 
tackling these issues with incremental success, resulting in 
the first adoptive CAR T cell therapy available to cancer 
patients (4). 

IL-13RA2 has been exploited as a target for adoptive 
immunotherapy in GBM by several groups (6,14-16,18). 
Importantly, early clinical trials have already started using 
appropriately re-engineered T cells (19). One example is 
making T cells equipped with a mutated IL-13 as a ligand 
targeting to tumor cells; the mutated ligand has much 
higher affinity towards the tumor-associated IL-13RA2 
than the normal tissue receptor, IL-13RA1/IL-4A (20). 
This change in IL-13 offered the means to specifically 
target GBM tumor cells, but not normal cells of the tumor 
micro-environment and surrounding normal tissue. The 
pre-clinical evaluation of such CAR T cells was very 
encouraging, and early-phase clinical trials have been 
subsequently begun. One patient with recurrent GBM who 
failed all other treatments experienced a complete response 
to CAR T cell therapy, even though the disease spread to 
the meninges (19). This marked and long-lasting effect in 
a patient who practically had no other therapeutic options 
provides further encouragement to develop T cells therapies 
for GBM.

As have other investigators working on generating 
CAR T cells against IL-13RA2, Krenciute et al. previously 
documented significant anti-tumor activity of single-chain 
variable fragment [sc(Fv)], instead of modified IL-13, IL-
13RA2 targeted CAR T cells in mice bearing intracranial 
tumors. To boost the extent of anti-tumor effect, they 
equipped the engineered T cells with the gene for IL-
15, so the ectopic cytokine would be released at the sites 
of T cell distribution and support leukocyte proliferation 
and survival. The rationale behind this specific approach 
is that IL-15 is a T cell growth factor (21). This maneuver 
successfully enhanced anti-tumor activity of CAR T cells 
transferred to mice with glioma compared to T cells 

without ectopic IL-15 (as determined by Kaplan-Meier 
curves). This result supports the rationale behind changing 
T cells to produce the cytokine. Thus, the authors achieved 
an improvement in CAR T cell therapy of the IL-13RA2 
expressing tumor in a mouse model.

However, with an improved outcome of such a modified 
therapy, the authors noticed an outgrowth of tumor cells 
lacking the receptor to various degrees. Of interest, it took 
the longest time for tumor recurrence in a group where 
tumor cells lost the IL-13RA2: more than 40 days after T 
cell injection. The authors attributed this phenomenon 
to antigen-negative immune escape. This means that IL-
15 helped CAR T cells to more effectively eliminate the 
receptor-positive tumor cells, but either some clones of 
tumor cells were receptor-negative to start with and they 
caused the recurrence, or not all receptor-positive cells were 
destroyed by T cells, but could stop expressing the receptor 
for various reasons. 

An alternative explanation is suggested here. Later tumor 
recurrence, which would be a desirable clinical event, maybe 
due to the fact that tumor cells not carrying the IL-13RA2 
any more are less tumorigenic; hence, selection of such cells 
during T cell therapy would be a welcome outcome (17). 
This hypothetical scenario was not examined experimentally 
in the paper discussed here. Nonetheless, unfortunately, 
tumors recurred; either this needs to be prevented, or 
another round of appropriate therapy is needed in order to 
think about cures. 

Krenciute et al. used mainly one cell model of GBM 
in their in vitro and in vivo studies, an established U-373 
GBM cell line. The authors did not discuss what portion, 
if any, of these cells are (for example) IL-13RA2-negative 
or have low levels in culture or when growing tumors in 
immunocompromised mice, making them less susceptible 
to CAR T cell cytotoxicity. Also, IL-13RA2 in tumor cells 
from recurrent tumors was not detected directly, but only 
after a short-term culture. It would be useful to know how 
this affects the levels of the receptor of interest. Moreover, 
the authors did not test the therapy on GSC cells; these can 
be more resistant to adoptive therapy, as these cells were 
suggested to be against other treatment modalities. 

Almost ten years ago, it was said that “Just about 
everything that relates to GBM pathobiology and its clinical course 
invites thinking about specific targeting of more than one tumor 
compartment/target and more than one mechanism controlling 
pathobiology of GBM, hence its maintenance and progression. This 
truly prompts consideration of rational combinatorial therapy/
cocktail of drugs” (22). The mostly negative experiences with 
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implementation of novel therapies in GBM, usually tested 
as individual treatments, only accentuated the validity of this 
statement. Thus, considering the complex and heterogenous 
nature of GBM, Krenciute et al. correctly suggest that we 
need targets in addition to IL-13RA2 to avoid antigen loss 
and to impact more of the tumor microenvironment, and 
more patients with transfer of re-engineered autologous T 
cells. Fortunately, there is no shortage of good candidates 
to supplement IL-13RA2 targeting. What may not be an 
optimal target is the deletion variant of the epidermal growth 
factor receptor (EGFRvIII), expression of which is very 
heterogenous and present in a fraction of GBM patients (23)  
although it was interesting to see that the systemically 
administered T cells targeting EGFRvIII localized to some 
extent to intracranial tumors (23). 

Among potentially other candidates for re-targeting T 
cells to GBM are, for example, Eph receptor A2 and A3. 
The Eph receptors belong to the largest mammalian family 
of the protein receptor tyrosine kinases (TRK) that play 
important roles in development. In adulthood, they appear 
to be expressed and functional in various malignancies. 
The EphA2 receptor is over-expressed in up to 60% of 
patients with GBM. It is linked to survival and present in 
various GBM compartments, such as differentiated tumor 
cells, tumor-initiating cells or GSCs, neovasculature, and 
tumor cells infiltrating normal brain (24). This receptor 
is also a good partner with IL-13RA2 for T cell targeting, 
since more than 90% of patients with GBM over-express 
the two receptors due to the only partial overlap in their 
expression. The EphA3 receptor is also an attractive 
partner to add to GBM targeting based on IL-13RA2 
or combined IL-13RA2/EphA2 targeting. The EphA3 
receptor has many features of the EphA2 receptor, as it is 
present in more than 50% of patients with GBM, is linked 
to survival in the mesenchymal GBM subgroup, and is 
important for the function of GSCs (25,26). But the EphA3 
receptor, unlike the EphA2 receptor, is also expressed 
in tumor-associated macrophages that play a permissive 
role in GBM progression (25). EphA3 receptor-positive 
cells also frequently localize to the perivascular niche. 
Thus, IL-13RA2, EphA2, and EphA3 receptors are over-
expressed in close to 100% of patients with GBM, and are 
present in various compartments responsible for disease 
progression and resistance to treatment. It is thus expected 
that targeting of these three receptors with appropriately 
re-engineered T cells will be less prone to the antigen loss 
variants, as observed with targeting of the IL-13RA2 alone 
in immunocompromised mice (although the IL-13RA2 

antigen loss may have a beneficial effect on its own). A 
similar multi-targeted approach has been recently proposed 
using targeted cytotoxic agents (25). In this way, various 
GBM compartments are targeted one at a time, such as 
differentiated tumor cells, tumor-initiating cells, tumor-
associated neovasculature, and tumor cells infiltrating 
normal brain. Only such concerted efforts will provide 
further significant progress in the management of GBM 
independently of the type of drugs used.
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