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Tumor cells hijack physiological mechanisms to create 
favorable conditions that allow them to survive and thrive 
within the hostile tissue and immune microenvironments. 
The identification and subsequent therapeutic blockade 
against immune checkpoint molecules including cytotoxic 
T lymphocyte associated antigen 4 (CTLA-4; CD152), 
programmed cell  death protein 1 (PD-1; CD279) 
and its ligand programmed death-ligand 1 (PD-L1; 
CD274; B7-H1) have evoked much excitement in cancer 
immunotherapy against a variety of chemo-refractory 
cancers (1-4). Since the initial characterization of the PD-1/
PD-L1 axis over 2 decades ago (5-7), over 4,000 articles 
have been published exploring how this immune checkpoint 
receptor-ligand pair influence tumor development, survival, 
and metastasis (2,8). Surprisingly, however, only a handful 
of studies have described how tumor PD-L1 is regulated 
at the transcriptional and post-translational levels. Recent 
studies by Mezzadra et al. (9). and Burr et al. (10) describe 
a novel post-translational mechanism by which PD-L1 is 
regulated within primary human dendritic cells and a variety 
of human tumor cell types, adding to our understanding of 
how this critical immune regulatory axis is regulated.

Using human chronic myelogenous leukemia (CML)-
derived HAP1 cells, Mezzadra and colleagues (9) identified 
chemokine-like factor-like MARVEL transmembrane 
domain containing family member 6 (CMTM6) as 
associated with IFNγ-induced PD-L1 expression using  
in vitro genetic screens. The correlation between CMTM6 
and PD-L1 co-expression was observed in 30 human 
cancers in available TCGA datasets. Short hairpin 
depletion of CMTM6 in melanoma, colon, and non-small 

cell lung cancer lines resulted in blunted surface PD-L1 
protein expression without affecting PD-L1 mRNA levels 
following IFNγ stimulation, a phenotype similarly observed 
in lipopolysaccharide (LPS)-stimulated dendritic cells. 
Additionally, CMTM4, with 55% homology to CMTM6, 
stabilized IFNγ-induced PD-L1 protein expression in 
the absence of CMTM6. The authors performed co-
immunoprecipitation analyses to show physical interactions 
between CMTM6 and PD-L1 involving both intracellular 
and transmembrane portions of PD-L1 at the plasma 
membrane. Finally, CMTM6 prolonged surface PD-L1 
protein half-life by preventing ubiquitination by STUB1, 
an E3 ubiquitin ligase. 

Burr et al. (10) independently identified and validated 
CMTM6 as an important regulator of PD-L1 through 
a whole-genome CRISPR-Cas9 deletion library screen 
in pancreatic cancer cell line, BxPC-3. As reported by 
Mezzadra et al., the authors showed CMTM6 depletion 
reduced PD-L1 protein expression without altering 
mRNA abundance. The authors also observed plasma 
membrane co-localization between CMTM6 and PD-L1. 
Furthermore, they found that CMTM6 was also located 
within recycling endosomes and facilitated PD-L1 recycling 
to the cell surface by bypassing lysosomal degradation, an 
additional mechanism to ubiquitination by CMTM6 for 
prolonged PD-L1 protein half-life (9). The end result was  
in vivo efficacy of shRNA targeting of CMTM6 in 
enhancing survival of mice inoculated with CMTM6def 
B16F10 melanoma. 

These two recent studies add to a growing repertoire of 
mechanisms by which tumors regulate PD-L1 expression 
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upon sensing immune pressure. PD-L1 is known to be 
induced on the surface of cancers and immune cells in 
response to IFNγ, which signals in a JAK/STAT-dependent 
way to promote PD-L1 gene transcription via interferon 
regulatory factor 1 (IRF1) (11). In multiple myeloma (MM), 
IFNγ-induced PD-L1 was abrogated by UO126, a potent 
MEK inhibitor, suggesting MEK/ERK signaling pathway 
contributed to this signaling axis (12). The same study found 
that surface PD-L1 on MM could be further driven by the 
toll-like receptor (TLR) ligands LPS, peptidoglycan, and 
CpG oligonucleotide in a MyD88-dependent manner (12).  
Lastly, in myelodysplastic syndrome both IFNγ and 
TNFα were capable of inducing PD-L1 on blast cell 
surface via NF-κB (13). In addition to induction by 
cytokines, mutations within tumor cells can drive 
PD-L1 expression. For example,  loss of  function 
mutations of PTEN combined with activation of PI3K 
led to increased PD-L1 gene expression in human 
glioblastoma multiforme (14). Additionally, activating 
EGFR mutations have been shown to upregulate 
PD-L1  in  an  ERK-dependent  mechan i sm (15 ) .  
Micro-RNAs (miRs) have also been shown to alter PD-
L1 expression via binding the 3' UTR region of PD-
L1 (15,16). Recently miR-34, which itself is regulated by 
p53, was shown to inhibit PD-L1 in murine models of 
non-small cell lung cancer (16). Delivery of miR-34 via 
liposomal nanoparticles increased the percentage of CD8+ 
cells and abundance of IFNγ and TNFα in the tumor 
microenvironment, and slowed tumor growth. These results 
and others studies were recently reviewed (17).

A recent study by Dorand et al. (18) demonstrated that 
the serine-threonine kinase, cyclin dependent kinase 5 
(Cdk5), critically regulates IFNγ-induced PD-L1 gene 
transcription in multiple tumor types. CRISPR-Cas9 
disruption of Cdk5 in a murine medulloblastoma model 
resulted in CD4+ T cell-dependent rejection. The authors 
proposed a mechanism by which Cdk5 regulates the stability of 
IRF2—an antagonist of IRF1-mediated IFNγ signaling (19)—
via phosphorylation of a co-repressor IRF2 binding protein 
2 (IRF2BP2) (20) to alter PD-L1 gene transcription. 
Another elegant study by Casey et al. (21) described an 
additional mechanism by which MYC controls PD-L1 and 
CD-47 transcriptions. Using human and murine MYC-
driven T cell acute lymphoblastic leukemia (T-ALL), they 
showed that MYC inhibition led to decreased PD-L1 gene 
transcription and resulted in immune-mediated rejection 
of established tumors. Chromatin immunoprecipitation 
(ChIP) analysis revealed direct physical interaction between 

MYC and the PD-L1 promoter. These two studies provide 
alternative mechanisms of tumor PD-L1 control at the 
transcriptional promoter/enhancer level. 

Additional tumor PD-L1 control exists at the gene 
transcript level. Kataoka et al. (22) identified structural 
variants in the 3' UTR region of PD-L1 leading to 
persistence of PD-L1 mRNA. Such 3' UTR structural 
variants were found in human T cell leukemia and 
lymphoma, diffuse large B cell lymphoma, and gastric 
adenocarcinoma. Structural PD-L1 variants containing 
functional extracellular and intracellular domains resulted 
in immune escape. Mice bearing EG-7 tumors with forced 
overexpression of 3' UTR variants had sustained tumor 
growth compared to control tumors following treatment 
with poly I:C treatment. While these 3' UTR variants 
were not commonly found among tumor types, they 
nevertheless offer an alternative mechanism for tumor PD-
L1 regulation. 

Post-translational PD-L1 modifications represent yet 
another level of control. Two studies demonstrated different 
mechanisms affecting the PD-L1 protein stability. Li  
et al. (23) revealed that phosphorylation of PD-L1 
by glycogen synthase kinase 3β (GSK3β) resulted in 
proteasomal degradation, which can be inhibited by 
epidermal growth factor (EGF). EGF increases PD-
L1 glycosylation to inhibit GSK3β interaction, leading 
to sustained PD-L1 expression. In this regard, gefitinib, 
an EGF inhibitor, synergizes with anti-PD-1 antibodies 
in vitro and in vivo in multiple murine cancers. Lim 
et al. (24) showed that TNFα signaling resulted in 
increased expression of COP9 signalosome 5 (CSN5), 
a deubiquitinating enzyme, to enhance PD-L1 protein 
expression. CSN5 associated kinase activity could be 
inhibited by curcumin, the treatment with which in mice 
bearing 4T1 tumors slowed tumor growth, increased tumor 
free survival, and increased IFNγ+ CD8+ T cells when 
combined with CTLA-4 blockade. 

The PD-1/PD-L1 axis is being thoroughly investigated 
for clinical applications as potent mediators of anti-
tumor immunity. Current emphasis in the field focuses on 
characterizing which tumor subsets will respond to such 
immunotherapeutic approaches (25,26). While antibodies 
targeting cell surface PD-L1 expression provide one such 
method for overcoming immune checkpoints, growing 
mechanistic studies on the regulatory pathways of tumor 
PD-L1 expression have the potential to uncover additional 
tumor-specific therapeutic targets while avoiding adverse 
side effects of autoimmunity due to non-tumor specific 
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nature of global PD-1/PDL1 blockade approach. The 
exciting discovery of CMTM6 and CMTM4 in PD-L1 
protein regulation further enhances our basic knowledge 
of PD-L1 regulation, significantly contributes to our basic 
understanding of cancer immunotherapy, and offers a new 
exciting venue for future immunotherapeutic development.
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