
© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2018;7(4):1135-1142 tcr.amegroups.com

Introduction

Genitourinary malignancies continue to pose a significant 
health burden on both men and women worldwide. In 
2018 prostate, kidney, and urinary bladder cancers are 
estimated to be responsible for over 31% of all new 
cancer cases in men with 315,040 estimated new cases of 
prostate and urinary system cancers in men and women 
combined (1). Accordingly, the therapeutic strategies 
for genitourinary cancers must continue to evolve. 
Contemporary systemic treatment options include targeted 
therapies, immunotherapies, cytotoxic chemotherapy, and 
endocrine-based approaches, with much of the current 
research focused on finding novel treatment targets and 
manipulating known biological pathways in more innovative 
ways. One such area of active investigation involves the 
androgen signaling axis, which is comprised of the androgen 
receptor (AR) and androgen synthesis pathways. 

While established as a suitable target for prostate 

cancer development and progression for over 70 years, the 
androgen signaling axis is now being exploited for the other 
genitourinary cancers as well. For example, the AR is a 
nuclear receptor that mediates gene transcription through 
the binding of various androgens and their effect on cell 
proliferation and differentiation make them an intriguing 
target for therapy. This review will highlight the current 
research regarding such therapies for prostate, bladder, and 
kidney cancer.

Androgen signaling in prostate cancer

A seminal moment in prostate cancer research occurred 
when Huggins and Hodges at the University of Chicago 
in the early 1940s first realized that prostate cancer 
development and metastasis was directly related to androgen 
signaling (2). This Nobel-prize winning discovery has led to 
the development of a multitude of pharmacological agents 
designed to disrupt the gonadal androgen synthesis pathway 
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(Figure 1) (3). 
Traditionally, androgen deprivation therapy (ADT) has 

been utilized as first-line treatment in men with metastatic 
disease. In this setting, it provides important palliative 
benefits such as reducing bone pain, pathologic fractures, 
and renal failure (4). Though it has demonstrated efficacy 
in delaying prostate cancer death, there is limited evidence 
that ADT improves overall survival (5,6). Most men receive 
multiple forms of ADT across several lines of therapy (7,8). 
However, nearly all of these men progress to the hormone-
refractory state of castrate-resistant prostate cancer 
(CRPC), which inevitably results in death. The initial 
treatment response to ADT is limited, as tumor cells evolve 
complicated mechanisms to reactivate the AR signaling axis, 
including AR amplification, gene mutations, splice- variant 
pathways, and aberrant co-regulator activities (9,10). A 
thorough understanding of the androgen signaling axis led 
to the development of second-line hormonal therapies that 
exploit this continued influence of androgen, even in the 
castrate-state (7).

CYP17 is a fundamental component in the synthesis 
of non-gonadal androgens from cholesterol, catalyzing 

two key reactions involved in this production of sex 
steroids (11). Ketoconazole, a weak inhibitor of CYP17, 
is often enlisted as an off-label therapy for CRPC. Its use 
in prostate cancer treatment showed a decrease in serum 
prostate-specific antigen (PSA) by ≥50% in 27% of patients 
diagnosed with CRPC (12). Following these findings, 
abiraterone was developed as the next generation inhibitor 
of CYP17. Abiraterone irreversibly binds to the CYP17 
enzyme and has proven to be 10-30 times more potent in 
the inhibition of CYP17 compared to ketoconazole (3,13). 
De Bono et al. reported on a phase III trial of abiraterone 
in men with PCa and found a significant improvement in 
overall survival compared to placebo [14.8 vs. 10.9 months; 
hazard ratio (HR) =0.65; 95% confidence interval (CI), 
0.54–0.77; P<0.001] as well as improvements in time to PSA 
progression, progression-free survival, and PSA response 
rate (14). 

A second-generation CYP17 pharmaceutical agent 
known as orteronel has been developed which has 
both 17α-hydroxylase and 17,20-lyase activity. The 
17α-hydroxylase activity is a potent inhibitor of CYP17, 
while the 17,20-lyase activity is used to counteract the 
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excess mineralocorticoid synthesis usually associated 
with the inhibition of CYP17 (15). The results from the 
phase I/II have shown that orteronel is a more specific 
CYP17 inhibitor that has fewer serious side effects when 
compared to abiraterone. Data is still being collected from 
larger phase III studies that could help push orteronel 
into routine clinical practice. Additionally, the molecules 
VT-464 and galeterone are both pharmaceutical agents 
used to specifically target the 17,20-lyase reaction over 
17α-hydroxylase activity. In contrast to abiraterone and 
orteronel, these newly described agents have an increased 
specificity towards 17,20-lyase, which results in the 
inhibition of testosterone synthesis while causing only 
minimal changes to patient cortisol levels (16). 

Further pharmaceutical agents involved in the direct 
inhibition of AR signaling in an effort to lower the overall 
increased AR activity often seen in CRPC have also been 
developed.

Enzalutamide is an AR signaling inhibitor with a high 
affinity for the AR that is used to dampen such signaling 
activity. When enzalutamide binds to the AR receptor, 
it down regulates its signaling by inhibiting nuclear 
translocation of the AR, DNA binding, and coactivator 
recruitment (17). Scher et al. reported on the AFFIRM 
clinical trial, a phase III investigation showing that the 
median overall survival increased by 4.8 months in men 
with CRPC who received enzalutamide compared to 
placebo (18.4 vs. 13.6 months, respectively; P<0.001) (17). A 
molecule with a similar mechanism of action, apalutamide, 
tested in the SPARTAN trial where in combination with 
ADT, men with non-metastatic CRPC had a median free 
survival of 40.5 months compared to 16.2 months in the 
placebo + ADT group (HR =0.45; 95% CI, 0.32–0.63; 
P<0.001) (18). FDA approval for apalutamide was recently 
granted for the treatment of this population of men.

Novel androgen independent therapies such as 
chemotherapy or immunotherapy have been employed to 
curtail further disease progression and improve survival. 
Traditionally, these therapies are delayed until castration-
resistant disease is documented. However, the results of 
STAMPEDE and CHAARTED have begun to shift this 
treatment paradigm. Reporting on the CHAARTED study, 
Sweeney et al. showed a 13.6-month increase in overall 
survival when docetaxel was given at the initiation of ADT 
compared to ADT alone (57.6 vs. 44.0 months; HR =0.61; 
95% CI, 0.47–0.80; P<0.0001) in men with metastatic 
prostate cancer (19). In the STAMPEDE trial, patients 
lived longer across all study groups, though the effect of 

early docetaxel treatment was still seen (81 vs. 71 months; 
HR =0.78; 95% CI, 0.66–0.93; P=0.006) (20).

Most recently, “deep androgen suppression” has been 
investigated, with the goal of disrupting the androgen 
signaling via different mechanisms simultaneously in order 
to maximize the effectiveness of therapy. For example, the 
LATITUDE trial randomly assigned 1,199 men with newly 
diagnosed high-risk, metastatic, castration sensitive prostate 
cancer (CSPC) to receive abiraterone plus ADT and 
prednisone, or ADT and placebo (21). The authors found 
that after a median follow-up of 30.4 months, the relative 
risk of death was 38% lower in the abiraterone plus ADT 
group (HR =0.62; 95% CI, 0.51–0.76; P<0.001). Based on 
the results of this trial abiraterone + prednisone is now FDA 
approved for the treatment of CSPC. Testing the effects 
of ADT + abiraterone, an abiraterone branch was opened 
in the STAMPEDE trial in 2011, where 960 patients had 
abiraterone added to their standard therapy regimens. 
Patients who received this added therapy experienced a 37% 
improvement in overall survival and 71% improvement in 
FFS (20). 

Though these newly designed targeted therapies have 
certainly proved to be beneficial, a subset of men will still 
develop resistance to these agents. One such mechanism 
of resistance to enzalutamide and abiraterone is a result 
of AR splice variants, specifically AR-V7. AR-V7 positive 
patients experienced no clinical benefit when treated with 
enzalutamide or abiraterone, suggesting the presence of 
drug resistance (22). Although this link between therapeutic 
resistance and AR-V7 had been revealed, the underlying 
mechanisms behind such findings have not been fully 
elucidated.

There is much work ongoing to characterize the different 
resistance pathways to AR targeting drugs in prostate 
cancer. Although many of these drugs have been established 
to be beneficial, additional resistance pathways should be 
more thoroughly mapped out in order to improve patient 
selection for AR directed therapies.

Androgen signaling in bladder cancer

Bladder cancer remains a difficult disease process to treat, 
as patients with non-muscle invasive disease are subject 
to multiple cystoscopies and often repeat endoscopic  
resections (23). In patients with muscle invasive disease, 
treatment is highly morbid and patients must choose 
between chemotherapy plus external beam radiation or 
radical cystectomy/urinary diversion with or without 
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neoadjuvant chemotherapy (24). Thus, novel therapeutic 
strategies are needed, especially when traditional treatment 
pathways are no longer effective. Recent evidence has 
suggested that the AR signaling pathway plays a role in 
bladder cancer development and progression, leading some 
to investigate its potential as a therapeutic target. 

Epidemiologic data strongly supports the idea that 
men are at an increased risk of developing bladder cancer 
compared to women, although women have been shown 
to present with more advanced disease. Data collected 
by Dobruch et al. from 1998–2008 showed a universal 
increase in the overall number of bladder cancer cases 
in both men and women, however, men displayed 25% 
faster rate of increase when compared to women (25). 
Some have proposed that this gender difference in bladder 
cancer rates can be attributed to a larger percentage of men 
who used to smoke than women. However, this gender 
difference was shown in various studies to be independent 
of previous smoking status (25,26). To explain this disparity 
in rates of bladder cancer between males and females, 
hormonal factors have been postulated to play a role. Ding 
et al. showed a correlation between male bladder cancer 
proliferation/migration and AR expression in two different 
bladder cancer cell lines (27). In UM-UC-3 cells in which 
AR is overexpressed, proliferation/migration was suppressed 
when AR was silenced. On the other hand, T24 cells in 
which had low levels of AR expression, proliferation and 
migration was significantly increased by AR overexpression. 
Furthermore, AR overexpression was associated with higher 
VEGF and CD24 expression, which have been previously 
been implicated in bladder cancer progression (28,29). 

Kameyama et al. carried out a similar study on the T24 
cells, investigating the role of AR in gemcitabine-resistant 
bladder cancer cells, which is commonly used to treat 
urothelial carcinoma, as well as the effects enzalutamide 
would have on this progressive disease. Microarray analysis 
showed an overall upregulation of AR expression in T24 
cell lines that were resistant to gemcitabine (T24GR), 
when compared to normal T24 cell lines, suggesting that 
AR upregulation may be an important mechanism in 
bladder cancer chemoresistance (30). With this in mind, 
enzalutamide was used to investigate the effects an AR 
inhibitor would have on these cancer cells. Enzalutamide 
proved to cause cell cycle arrest in T24GR cell lines, 
resulting in the inhibition of T24GR cell growth and 
reduction in AR transcriptional activity (30).

Izumi et al. sought to further investigate the clinical 
significance of AR blockade on patients with bladder cancer. 

They evaluated 162 men with bladder cancer from a cohort 
of men who had also been diagnosed with prostate cancer 
between 1991–2013. With a median follow up time of  
62 months, the data revealed a 50% recurrence rate in 
patients who were not subjected to ADT and a 22% 
recurrence rate in patients received ADT (5-year actuarial 
recurrence-free survival: 76% vs. 40%; P<0.001) (31). 
Similarly, Shiota et al. carried out a study with the similar 
goal of determining the effect ADT on intravesical 
recurrence rates for non-muscle invasive bladder cancer. 
The study involved 228 men (32 with and 196 without 
ADT), with a median follow up of 3.6 and 3 years, 
respectively. Recurrence was shown to develop in 30.1% of 
men who were not treated with ADT compared to 12.5% 
for men who received ADT. In addition, tumor progression 
to muscle invasive bladder cancer was seen in 3.1% of men 
who were not exposed to ADT, while none of the men who 
were received ADT progressed (32).

Other agents that influence the androgen-signaling 
axis have been studied in order to determine their ability 
to suppress bladder cancer. Using data from the Prostate, 
Lung, Colorectal, and Ovarian (PLCO) cancer screening 
trial, Morales et al. evaluated the role that finasteride, a 
5-alpha reductase inhibitor, had on the suppression of 
bladder cancer progression (33). A multiple cox regression 
analysis linked the use of finasteride with a significant 
decrease in bladder cancer development (HR =0.634; 95% 
CI, 0.493–0.816; P=0.0004) providing further evidence that 
manipulation of the androgen axis may have a role in the 
treatment of patients with bladder cancer (33).

Androgen signaling in renal cell carcinoma (RCC)

Current systemic therapeutic regimens for advanced and 
metastatic RCC are still predominantly based on targeted 
therapies (34). While benefits in survival and disease 
progression have been shown, complete responses are 
rarely observed. As combination treatments with targeted 
therapies are often highly toxic, newer treatment options 
are needed (34-37). A growing body of evidence indicates 
that the androgen signaling axis could serve in such a 
manner.

Ha et al. examined renal tissue from 115 patients with 
primary pathological stage T1 or T2 RCC and compared 
them to 57 non-malignant controls (38). They found 
no significant difference in AR mRNA expression in the 
normal tissue samples when compared to the AR expression 
in tumor tissue samples (P=0.684). However, AR levels 
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were shown to be significantly higher in patients with 
pT2 tumors than in those with pT1 tumors. The authors 
also showed that, on average, patients with a higher AR 
expression levels had shorter progression free survival 
(log rank test P=0.040, Figure 2A) and lower overall 
survival rates (log rank test P=0.040, Figure 2B), linking 
AR expression to poor prognosis. Importantly, 25.2% of 
subjects in this study were women, indicating that this is not 
a gender-driven phenomenon and that agents targeting this 
pathway may have a role regardless of the patient’s sex. 

Similarly, He et al. transfected normal human kidney 
epithelial cells with AR and showed that these cells 
quantitatively formed a larger and a higher number of 
colonies in soft agar when transformed by a carcinogen (39).  
The addition of functional AR in stable RCC tumor cell 
lines increased cellular proliferation compared to their 
vector controls, and when enzalutamide was added, these 
effects were suppressed. Analogous findings have been 
shown with an in vivo model as well. When AR-positive 
Caki2 RCC cell lines were orthotopically xenografted 

into nude mice, the tumor growth rate was significantly 
decreased when mice underwent castration compared 
to when the mice were not castrated (40). Furthermore, 
male mice with these Caki2 xenografts were exposed to 
enzalutamide or abiraterone acetate. After three weeks of 
treatment, tumor volume was twenty- and nine-fold smaller 
in the enzalutamide and abiraterone groups, respectively, 
compared to the controls (Figure 3) (40), Taken together, 
these results suggest that AR expression may help initiate 
RCC tumor growth and support RCC progression. 

Other studies have attempted to elucidate the mechanism 
of AR involvement in RCC. Guan et al. showed that AR 
acts in part to mediate the AKT → NF-κB → CXCL5 
signaling pathway (41). This PI3K/AKT pathway, which is 
a target of mTOR inhibitors and is involved in endothelial 
cell recruitment, is now well known to be closely associated 
with RCC progression. Thus, AR mediated modulation of 
the pathway may influence the tumor microenvironment 
via increased endothelial cell recruitment and promoting 
angiogenesis. Additionally, in vivo studies were carried out 

Figure 2 Kaplan-Meier curves of estimated progression-free (A) and cancer specific (B) survival by AR mRNA expression levels. Reproduced 
with permission from (38). AR, androgen receptor.
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on nude mice models in order to determine if a similar 
trend would be observed. AR negative and positive cell lines 
were orthotopically xenografted into the kidney capsules 
of nude mice. Interestingly, those mice injected with the 
AR positive cells had larger tumor sizes in addition to more 
endothelial cell recruitment (41).

These reports not only exemplify the androgen signaling 
axis’ potential importance in RCC progression, but also 
propose a mechanism on how this effect is carried out. 
Building on the results from such studies, clinical trials have 
been developed in an attempt to see how these possible 
therapeutic agents targeting the AR effects RCC in a 
clinical setting. The BARE trial (Blockade of Androgens 
in Renal cell carcinoma using Enzalutamide), a phase 0 
clinical trial (NCT02885649), aims to uncover the effects of 
enzalutamide on tumor growth prior to surgical resection. 
Patients who have a clinical T1N0M0 renal mass that is 
biopsy-proven to be clear cell RCC with AR expression 
of ≥4,580 copies/μg RNA are eligible to participate. 
Enrolled subjects will receive enzalutamide for 4 weeks and 
then undergo either partial or radical nephrectomy. Cell 
proliferation and tumor apoptosis as measured by annexin 
will be used as the primary outcome measures of this study. 
The BARE trial may offer new insights on the function of 
AR and its role as a therapeutic target in RCC. 

Conclusions

The treatment landscape of genitourinary malignancies 
continues to evolve as our understanding of the genomic 
and molecular biology of these diseases is advanced. 
Current therapeutic modalities for these disease processes 
include targeted therapies, cytotoxic chemotherapies, and 

immuno-oncologic agents. Although robust responses 
can sometimes be seen, objective response rates are often 
limited and treatment options are usually less efficacious 
for those who progress after initial therapy. Approaches 
utilizing a combination of therapies are appealing but are 
frequently limited by their increased toxicity profiles. In 
this respect, targeting the AR and the androgen synthesis 
pathway may offer a novel approach to inhibiting disease 
progression and improving patient outcomes. While the 
androgen signaling axis has been known to be an important 
driving force behind prostate cancer development for some 
time, it has recently been implicated in both bladder cancer 
and RCC as well. Thus, further work to elucidate the 
complete mechanisms of such findings is imperative. 
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Figure 3 Targeting the androgen signaling axis decreases tumor growth in AR-positive human RCC cell line, Caki2, xenografts. (A) After 
inoculating the flanks with Caki2, 30 mice were randomized into six groups of five mice each. The treatment was rendered as indicated. 
Both enzalutamide (Enz) and abiraterone acetate (AA) decreased tumor volume dramatically. (B) Gross picture of tumors collected from 
mice after treatment. (C) After establishing the tumors, 30 mice were surgically castrated and treated with the indicated agents. Again, Enz 
and Abi decreased tumor volume significantly. *, statistically significant. Reproduced with permission from (40). 
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