
© Pioneer Bioscience Publishing Company. All rights reserved. Transl Cancer Res 2014;3(3):217-232www.thetcr.org

Original Article

A recursively partitioned mixture model for clustering time-course 
gene expression data

Devin C. Koestler1, Carmen J. Marsit2,3, Brock C. Christensen2,3, Karl T. Kelsey4, E. Andres Houseman5

1Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, USA; 2Department of Community and Family Medicine, 

Section for Biostatistics and Epidemiology, Dartmouth Medical School, Hanover, New Hampshire 03756, USA; 3Department of Pharmacology 

and Toxicology, Dartmouth College, Hanover, NH 03756, USA; 4Department of Epidemiology, Brown University, Providence, RI 02192, USA; 
5Department of Public Health, Oregon State University, Corvallis, OR 97331, USA

Contributions: DCK conceived of the statistical method, implemented the simulation studies and data analysis, and drafted the manuscript. BCC and 

CJM helped interpret the results and participated in the drafting of the manuscript. KTK participated in the study design, interpretation of results, 

and drafting of the manuscript. EAH contributed to the conception of the statistical methodology and helped to draft the manuscript. All authors 

read and approved the final manuscript.

Correspondence to: Devin C. Koestler, Ph.D. Department of Biostatistics, University of Kansas Medical Center, 3901 Rainbow Blvd, Robinson Hall, 

Suite 5032A, Kansas City, KS 66160, USA. Email: dkoestler@kumc.edu.

Background: Longitudinally collected gene expression data provides an opportunity to investigate the dynamic 
behavior of gene expression and is crucial for establishing causal links between changes on a molecular level and 
disease development and progression. In terms of the analysis of such data, clustering of subjects based on time-
course expression data may improve our understanding of temporal expression patterns that result in disease 
phenotypes. Although there are numerous existing methods for clustering subjects using gene expression data, 
most are not suitable when expression measurements are repeatedly collected over a time-course. 
Methods: We present a modified version of the recursively partitioned mixture model (RPMM) for 
clustering subjects based on longitudinally collected gene expression data. In the proposed time-course 
RPMM (TC-RPMM), subjects are clustered on the basis of their temporal profiles of gene expression using 
a mixture of mixed effects models framework. This framework captures changes in gene expression over time 
and models the autocorrelation between repeated gene expression measurements for the same subject. We 
assessed the performance of TC-RPMM using extensive simulation studies and a dataset from a multi-center 
research study of inflammation and response to injury (www.gluegrant.org), which consisted of time-course 
gene expression data for 140 subjects. 
Results: Our simulation studies encompassed several different scenarios and were aimed at assessing the ability 
of TC-RPMM to correctly recover true class memberships when the expression trajectories that characterized 
those classes differed. Overall, our simulation studies revealed favorable performance of TC-RPMM compared 
to competing approaches, however clustering performance was observed to be highly dependent on the 
proportion of class discriminating genes used in clustering analysis. When applied to real epidemiologic data 
with repeated-measures, longitudinal gene expression measurements, TC-RPMM identified clusters that had 
strong biological and clinical significance. 
Conclusions: Methods for clustering subjects based on temporal gene expression profiles is a high priority 
for molecular biology and bioinformatics research. Along these lines, the proposed TC-RPMM represents a 
promising new approach for analyzing time-course gene expression data.
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Introduction

Studies involving the collection of microarrays over a 
time-course are necessary for understanding the dynamic 
nature characteristic of biological systems. In the context of 
gene expression data, such studies enable the investigation 
of temporal profiles of gene expression during a given 
biological process, and in doing so, provide valuable insight 
about how gene expression levels evolve over time as well as 
the nature of gene dependencies during a given biological 
process (1). For a given clinical outcome (i.e., disease 
onset), expression measurements collected longitudinally 
on initially disease-free subjects may allow one to 
distinguish causal genomic features from consequential 
ones. Additionally, if environmental influences or other 
exposures are recorded, it may be possible to relate these 
to changes in genomic features, thereby illuminating the 
path from exposure to disease on a molecular level. Such 
insights are not possible using microarrays collected cross-
sectionally, i.e., from a static viewpoint, underscoring the 
importance of temporal microarrays and the companion 
need for appropriate analytic tools to assist in furthering 
our understanding of molecular biology. 

Due to the large number of genes profiled in a typical 
microarray experiment and the increasing interest in the 
study of groups of subjects with similar expression profiles, 
unsupervised clustering of subjects has emerged as one of 
the most popular statistical methods for analyzing such 
data. A vast array of unsupervised clustering algorithms 
have been proposed for clustering gene expression data, 
including hierarchical clustering (2), K-means clustering (3), 
self-organizing maps (4), and model-based clustering using 
Gaussian mixture models (5). Although there is no universal 
consensus on the “best” method for gene expression data, 
a recent study examining the performance of 7 different 
commonly used clustering algorithms on 35 different 
cancer gene expression data sets revealed that a Gaussian-
distributed finite mixture model, followed by K-means, 
exhibited the best performance in terms of recovering the 
true structure of the data sets (6). Along the lines of model-
based clustering via mixture models, Houseman et al. [2008] 
proposed a model-based recursive-partitioning algorithm 
to navigate clusters in a beta mixture model (7), although 
this method has also been extended for navigating clusters 
in a Gaussian mixture model (8). This method, termed the 
Recursively Partitioned Mixture model (RPMM), has been 
extensively applied for clustering large-scale genomic data 
(9-13) and is freely available as a package ‘RPMM’ in the 

Comprehensive R Archive Network (CRAN).
The aforementioned methods have proved to be 

successful strategies for unsupervised clustering analysis 
of large-scale genomic data, however they lack a formal 
framework for modeling the characteristics unique to 
microarray data collected over a time-course. As described 
by Luan et al. [2003], one important characteristic of 
such data is the possible dependency of gene expression 
levels across time for a given gene (1). Furthermore, gene 
expression levels are dynamic with respect to time. Methods 
that capture the dynamic changes in gene expression over 
time while accounting for anticipated autocorrelation 
between successive expression measurements are crucial for 
clustering longitudinally collected microarray data. Coffey 
et al. [2011] provide a review of functional data analytic 
(FDA) techniques for analyzing time-course microarray 
data (14). Such techniques represent the entire sequence 
of measurements for an individual expression profile as a 
single function—the resulting functions are then used for 
subsequent clustering of genes. For example, a mixture 
of mixed-effect models using B-splines for the clustering 
of genes has been proposed (1). While these approaches 
have been successful for the clustering of genes, we seek 
a method for clustering subjects on the basis of their 
individual gene-expression trajectories, with the goal that 
resulting clusters will provide insight regarding phenotypic 
or exposure related disparities between subjects. Hence, 
our data consists of J × Ti matrix of gene expression levels 
across time for each of N subjects i=1, 2,…, N, where J 
denotes the number of genes profiled and Ti represents the 
number of time-points gene expression data was collected 
for the ith subject. Although the present version of RPMM 
has many desirable properties, its current formulation 
relies on an assumption of class-conditional independence 
of genes and subjects.  Therefore, RPMM may be 
inappropriate for repeated-measure data, for which within-
subject autocorrelation may be pronounced. Moreover, the 
existing RPMM methodology was designed specifically for 
clustering subjects on the basis of static microarray data and 
therefore lacks a formal framework for clustering subjects 
on the basis of their gene-expression trajectories.

As a result of the above limitations, we seek an adaptation 
of RPMM that: (I) directly accounts for the within-subject 
dependencies in repeatedly measured gene expression data and 
(II) clusters subjects on the basis of their longitudinal profile of 
gene expression. In addition, the proposed framework should 
admit irregular spacing of microarray measurements, which is 
common in longitudinal microarray studies involving human 
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subjects. Along the lines of Luan et al. [2003], we propose a 
method called time-course RPMM (TC-RPMM) that utilizes 
a mixture of mixed-effects model framework for modeling 
the time structure and time dependence of individual gene 
expression measurements that are repeatedly measured 
over time. Within this framework, TC-RPMM permits the 
clustering of subjects on the basis of their temporal profiles of 
gene expression across a collection of genes.

The outline for the remainder of this paper is as follows: 
in the Methods section we provide an overview of RPMM 
and the proposed TC-RPMM method, as well as summary 
of the data set used in our data application. In the Results 
we report our findings for both the simulation studies 
and data application. We finish with a discussion of our 
study results and provide a summary of the limitations and 
possible extensions of our approach.

Methods

Finite mixture models and RPMM

We begin by providing a brief overview of the conventional 
mixture model formulation as well as RPMM, as these serve 
as the foundation for the proposed modified TC-RPMM. 
Interested readers may refer to Houseman et al. [2008] for a 
more comprehensive description of RPMM.

For static gene expression data from subject i ∈{1, 2, 
…, N} at gene j ∈{1, 2, …, J}, we assume the distribution 
f Y y C kij i kj= =( );Θ , where Θkj  is a vector of parameters that 
depends on both class k and gene j. Houseman et al. [2008] 
assumed beta-distributed responses, however in general any 
parametric distribution could be used—for appropriately 
transformed gene expression data (i.e., log2-transformed), 
we assume Gaussian-distributed responses. Hence, 
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membership C ki = , the above formulation effectively 
assumes the following model for Yij
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where ε εkij kij⊥ ' , for j ≠ j'. Hence, with observed data 
D N={ , ,..., }y y y1 2 , the conventional mixture model approach 
involves maximizing the full-data log-likelihood, 
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and iterate until ( )ϑ  does not change. The final weight, wik
represents the posterior probability that subject i belongs to 
class k.

One of the fundamental issues in problems involving 
clustering is the selection of the number of classes K (16). 
Since the number of classes K is typically unknown, one 
might decide on the number of classes by fitting mixture 
models for a range of possible values of K, computing the 
resulting BIC statistics and selecting the value of K that 
corresponds to the minimum BIC. The entire operation has 
approximate complexity NJKmax2 , where Kmax is the maximum 
number of classes attempted. Houseman et al. [2008] 
proposed a recursive alternative to conventional mixture 
model approach based on a weighted-likelihood version 
of [4] that typically has complexity no more than NJKlogK. 
Briefly, RPMM recasts the conventional mixture model 
formulation into a hierarchical framework [a model-based 
version of the HOPACH algorithm (17)], where the first 
step of RPMM, representing the top of the tree, involves 
fitting a 1-class model to the entire dataset. The BIC 
from the resulting model is then computed and compared 
to the BIC resulting from a 2-class mixture model fit to 
the entire data (first branch of the tree). If the BIC from 
the 2-class model is less than the BIC from the 1-class 
model, we continue recursion. Under the assumption that 
the resulting classes from the previous 2-class model can be 
further split, and that each subject belongs to the subsequent 
splits only with probability equal to the weight assigned from 
the previous split, the weighted-likelihood EM algorithm is 
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applied recursively to obtain two new classes (next branch in 
the tree). As before we compare the BIC from the previous 
split to the new split and continue recursion if the BIC from 
the new split is less than the BIC from the previous split, 
suggesting a more parsimonious representation of the data. As 
previously described, recursion can be terminated early if the 
split leads to a less parsimonious representation of the data or 
if the classes under consideration comprise a small number of 
pseudo-subjects. The later is used as a safeguard, due to the 
fact that mixture models become unstable with small weights 
(representing a small number of pseudo-subjects).

The final clustering solution consists of K classes with 
the final  assembled from the individual vectors , as well 
as the posterior probabilities of class membership for each 
subject across each of the terminal classes.

Time-course RPMM

One major limitation of the existing RPMM framework 
is that the underlying model described in Eq. [3] is not 
suitable for microarray data collected over a time-course 
due to the anticipated autocorrelation between repeated 
measurements on the same subject; nor does it capture the 
relationship between gene expression as a function of time. 
As above, we shall assume that subjects belong to one of K 
possible classes, which are characterized by the temporal 
patterns of gene expression across J different genes. Letting 
Yijt represent the gene expression measurement for gene j ∈ 
{1, 2, …, J} at time t ∈ {1, 2, …, Ti} for subject i ∈ {1, 2, …, N}, 
Yij represents a Ti×1 vector of time-course gene expression 
measurements for gene j among subject i. Also, we define 
Xi as a Ti×2 design matrix, such that the first column is a 
vector of ones and the second column contains the time-
points at which microarray data were observed for subject i 
(i.e., ti Tt t t

i
= 1 2, ,..., ). Assuming that subject i belongs to one of K 

possible classes, C ki =  k K∈{ , ,..., }1 2 , we propose the following 
linear mixed effects model for characterizing changes in 
gene expression as a function of time: 

[6]Y X B Z b eij i kj i ikj ikj i N j J= + + = =1 2 1 2, ,..., , ,...,and

where Zi is a Ti × q design matrix, Bkj kj kj
T= ( , )β β0 1  is a vector 

of fixed-effects parameters for class k, bikj is a q×1 vector 
of subject-specific random-effects where b 0 Dikj kjMVN~ ( , ) , 
e 0ikj kj kjMVN~ ( , ( ))σ φ2Λ , and b eikj ikj⊥ . It follows that the marginal 
distribution for Yij is Y X B Z D Zij i kj i kj i

T
kj kjMVN~ ( , ( ))+σ φ2Λ . In the 

above model [6], the expression trajectory for gene j among 
latent class k is effectively captured by Bkj. Moreover, the 
above framework is amenable for irregularly collected data 

and provides a convenient way for directly modeling the 
between and within-subject variation. Estimation of the 
parameters in model [6] can be easily carried out using the 
EM algorithm (18).

We note that in the above model Λ( )φ  can be specified 
to assume different structures (i.e., compound symmetric, 
autoregressive, Toeplitz, etc.) depending on the nature of 
the data, allowing for additional flexibility in modeling 
time-course microarray data. We further note from [6] 
that in most scenarios Zi is a either a Ti×1 vector of ones, 
indicating a random intercept only model, or a Ti×2 matrix 
Z Xi i≡ , indicating a random intercept and slopes model. In 
principle, nonlinear trajectories could be addressed by the 
incorporation of higher-order polynomial terms or B-splines (1).

Within the mixture model framework, assuming that 
subject i belongs to class k, C ki =  k K∈{ , ,..., }1 2 , with probability 
ηk, and ηk

k

K

=
∑ =

1
1 and that the expression of different genes are 

linearly independent conditional on class membership, the 
likelihood contribution from subject i is given by:
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maximize the full data log-likelihood given above, 
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with respect to ϑ. The likelihood contribution for subject 
i can then be readily integrated within the current RPMM 
framework as summarized above. Specifically, in the first 
step of TC-RPMM a 1-class model is fit to the entire 
dataset and the BIC for this model is computed. The 
BIC form the 1-class model is then compared to the BIC 
resulting from a 2-class mixture model fit to the entire data 
(first branch of the tree). If the BIC from the 2-class model 
is less than the BIC from the 1-class model, we continue 
recursion, successively splitting the data and comparing 
the BIC from new splits of the data to BIC computed 
from the previous split. As previously mentioned, this 
process is terminated if the splitting classes leads to a less 
parsimonious representation of the data (i.e., BIC BIC( ) ( )r r> −1  
where r is an index for the recursion sequence) or if the 
classes under consideration comprise a small number of 
pseudo-subjects. Thus, The final clustering solution consists 
of K classes estimated recursively using the procedure 
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describe above, , and posterior probabilities of class 
membership for each subject across each of the K terminal 
classes (i.e., w C kik i i i iJ= =P( | , ,..., , )Y Y Y1 2 ϑ ).

One other important difference between RPMM 
and TC-RPMM involves the initialization of the N×K 
matrix of weights W=(wik). As previously described, the 
rows of W represent initial guesses at class membership 
probabilities for each subject. In the existing RPMM, W is 
initialized using a fuzzy clustering algorithm, such as the 
fanny algorithm (19) available in cluster R-package. Since 
time-course microarray data is characterized by multiple 
measurements on the same genes repeatedly throughout 
time, there are several options for initializing W for the 
proposed TC-RPMM. The first option involves fitting 
the fanny algorithm to the subjects under consideration 
using their average gene expression values over time (i.e., 
Y

T
Yij

i
ijtt

Ti=
=∑1

1  for subject i and gene j), however this is limited 
in that the rate of change of gene expression measurements 
of time is not taken into account. In the second option, the 
fanny algorithm is fit to the subjects under consideration 
using gene-specific random intercepts and slopes. In 
particular, using the best linear unbiased predictors (BLUPs), 

, j = 1, 2,…, J obtained from fitting a series linear mixed-
effects models to each of the J genes used for clustering 
analysis. We recommend the later option as it is more in line 
with the philosophy of our overall approach and because it 
tends to result in faster EM-convergence compared to the 
first option. Other options for initializing the weight matrix 
in this context are described elsewhere (20).

Description of the Glue study data

We implemented simulation studies and an analysis 
of a real biological time-course microarray data set 
to investigate the performance and application of the 
proposed TC-RPMM. The simulation studies as well 
as our data application utilized time-course microarray 
data acquired from the Glue Project consortium (www.
gluegrant.org). Briefly, this data set consisted of time-
course gene expression data collected on 140 patients, 
admitted to one of eight participating institutions, 
between 2004 and 2010. As described in Rajicic et al. 
[2010], the Glue study entry criteria included patients 
who had suffered a blunt trauma without isolated head 
injury, who had arrived at a hospital within 6 hours of the 
injury, and had either hypotension or an elevated base 
deficit (21). Subjects with anticipated survival of less than 
24 hours, significant pre-existing organ dysfunction, or 

severe traumatic brain injury were excluded from analysis. 
Blood was sampled at 12 hours and at 1, 4, 7, 21 and 28 
days after the blunt trauma and was hybridized to an 
Affymetrix HU133 plus 2.0 gene chip, which profiles 
the expression status of 54,676 unique probe-sets. The 
details of the clinical protocol and sample processing have 
been previously described (22). As in Rajicic et al. [2010], 
respiratory recovery, the primary outcome of interest in 
our data application, was defined as a patient’s ability to 
breathe on their own after the removal of mechanical 
ventilation. The maximum follow-up time was 28 days, 
with patients who had not recovered by 28 days treated 
as censored with respect to respiratory recovery. Written 
informed consent was obtained from all patients or their 
legally authorized representative.

Preprocessing steps for the Glue study data

Gene expression measurements were extracted from 
oligonucleotide probes by a perfect-match model using 
dChip software (www.dChip.org). Gene expression values 
were log-transformed prior to any calculations. We 
implemented several steps to reduce the dimensionality 
of the microarray. First, we excluded probe-sets labeled 
“Absent” over all arrays. “Present/Absent” labels for the 
Affymetrix HU133 plus 2.0 gene chip indicate whether 
a probe-set was reliably detected or not for a particular 
array. This step reduced the number to 48,992 probe-
sets from 54,676 probe-sets. Under assumption that genes 
exhibiting temporal changes are potentially related to the 
time-to-respiratory recovery, we next excluded probe-
sets with a “low’ sample coefficient of variation, which was 
defined as having a coefficient of variation below the sample 
median. This reduced the number of probe-sets to 20,455, 
which represented the final set of probes that were used in 
subsequent analyses.

Results

Simulation studies

We conducted a variety of simulation studies aimed 
at understanding the performance of TC-RPMM. To 
understand the sensitivity of TC-RPMM for recovering true 
class membership for varying numbers of true underlying 
clusters/classes, simulation studies were conducted where 
the true number of classes was equal to 2, 3, and 4, i.e., K = 
{2, 3, 4}. For each of the true number of classes, longitudinal 
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gene expression data was simulated for a total 100 genes (i.e., 
J =100). In the simulations where K =2, longitudinal gene 
expression data was simulated for a total of 50 subjects (25 
subjects per class), when K =3 longitudinal gene expression 
data was simulated for a total of 75 subjects (25 subjects per 
class), and when K =4 longitudinal gene expression data was 
simulated for a total of 100 subjects (25 subjects per class). 
We were also interested in the performance of TC-RPMM 
in recovering true class memberships when the fraction of 
discriminating genes was varied. By discriminating genes, 
we are referring to genes whose expression trajectory 
differed between the classes (further details to follow). To 
this end we considered simulations where the fraction of 
discriminating genes ranged from 0-100%; specifically, 0%, 
10%, 30%, 50%, 70%, 90%, and 100%.

Because our model assumes a linear relationship between 
gene expression measurements and time (i.e., the intercept 
and slope parameters govern the expression trajectory 
of a given gene), our data were simulated under three 
different general scenarios: (I) scenario 1, the intercepts of 
discriminating genes differ between classes, but their slopes 
are the same; (II) scenario 2, the slopes of discriminating 
genes differ between classes, but their intercepts are the 
same and (III) scenario 3, both the slopes and intercepts of 
discriminating genes differ between the classes (Table 1).

For the class discriminating genes, longitudinal gene 
expression data were simulated from a multivariate normal 

distribution with mean  and variance-covariance 
σ σb i i

T
Z Z2 2∗ ∗ ∗ ∗( ) + I  (i.e., compound symmetric). Here,  refers 

to a Ti∗ ×2  design matrix, whose first column is a vector of 
ones and whose second column is a vector of the time points 
at which microarray data was collected for subject i in our 
simulation study. Additionally, Zi∗  refers to a Ti∗ ×1  vector 
of ones (i.e., random-intercept only). For each subject 
in our simulations, the time points at which microarray 
data was collected, representing the second column of the 
design matrix X*, were sampled with replacement from 
the time points for which microarray data was collected 
among the 140 Glue study subjects. In the above, σ b

2∗  and 
σ 2∗  represent the between- and within-subject variation and 
were pairwise sampled with replacement from between- and 
within-subject variances estimated for the 20,455 probe-
sets in the Glue study data. Briefly, this was accomplished 
by fitting a random intercept only model to the 140 Glue 
study subjects, recording the estimates of the between- 
and within- subject variances for each of the 20,455 probe-
sets. Lastly Bk = (β0k, β1k)

T is a 2×1 vector whose elements 
represent the class-specific intercept and slope and thus, 
reflect the nature of the gene-expression trajectories over 
time. The specific values of Bk = (β0k, β1k)

T across each of the 
considered simulation scenarios are given in Table 1. For 
example, when the true number of underlying classes was 
equal to two (i.e., K =2) longitudinal gene expression data 
discriminating genes in scenario 3 was simulated assuming 

Table 1 Simulation parameters for the class discriminating genes across the three simulation scenarios. Longitudinal gene expression 
data was simulated when the true number of underlying classes was K =2, 3, and 4. Across the three simulation scenarios, β0k represents 
the intercept and β1k the slope for the expression trajectory for class k

Number of 

classes

Group Simulation scenario

1 2 3

(a) (b) (c)

K =2 Class 1 β01 =5.0; β11 =0.10 β01 =5.0; β11 =0.20 β01 =5.0; β11 =0.10 β01 =5.0; β11 =0.25 β01 =5.0; β11 =0.20

Class 2 β02 =5.5; β12 =0.10 β01 =5.0; β12 =–0.20 β02 =5.0; β12 =0.25 β02 =5.0; β12 =–0.20 β02 =5.5; β12 =–0.20

K =3 Class 1 β01 =5.0; β11 =0.10 β01 =5.0; β11 =0.20 β01 =5.0; β11 =0.20

Class 2 β02 =5.5; β12 =0.10 β02 =5.0; β12 =0.00 β02 =5.5; β12 =0.00

Class 3 β03 =6.0; β13 =0.10 β03 =5.0; β13 =–0.20 β03 =6.0; β13 =–0.20

K =4 Class 1 β01 =5.0; β11 =0.10 β01 =5.0; β11 =0.25 β01 =5.0; β11 =0.25

Class 2 β02 =5.5; β12 =0.10 β02 =5.0; β12 =0.10 β02 =5.5; β12 =0.10

Class 3 β03 =6.0; β13 =0.10 β03 =5.0; β13 =–0.05 β03 =6.0; β13 =–0.05

Class 4 β04 =6.5; β14 =0.10 β04 =5.0; β14 =–0.20 β04 =6.5; β14 =–0.20

Scenario 1, intercepts of class discriminating genes differ between classes, but slopes are equal; Scenario 2, slopes of 

class discriminating genes differ between classes, but intercepts are equal; Scenario 3, both Intercepts and slopes of class 

discriminating genes differ between classes.
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B1 = (5.0, –0.2)T and B2 = (5.5, 0.2)T, for classes 1 and 2 
respectively. The selection of class-specific slope parameters 
listed in Table 1 was motivated by the fixed-effects estimates 
of slope across the 20,455 probe-sets in the Glue study 
data, which ranged from –0.20 to 0.25. Thus, our selection 
class- and scenario-specific slopes are within the dynamic 
range of slope estimates obtained from the Glue data. For 
non-discriminating genes, longitudinal gene expression 
data were simulated similarly, but with B0 = (6, 0.05)T as the 
fixed-effect parameters for intercept and slope.

In addition to evaluating the performance of the proposed 
TC-RPMM, we also benchmarked its performance against 
two versions of the standard RPMM and two versions of 
K-means clustering. Here, “standard” RPMM refers to a 
Gaussian-distributed RPMM as described in Houseman 
et al. [2008]. The motivation behind using K-means and 
Gaussian-distributed RPMMs as a basis of comparison is 
that collectively, they comprise both non-parametric and 
model-based clustering methods. Moreover, their selection is 
driven by recent work showing that model-based clustering 
via a finite mixture of Gaussians, followed by K-means, 
demonstrated the best clustering performance in a recent 
comparison of various clustering methodologies across 
35 different gene expression data sets (6). Among the two 

versions of a standard RPMM considered, the first version 
involved applying the standard Gaussian RPMM to cluster 
subjects using their gene expression data for the first time-
point only (i.e., baseline gene expression measurements), 
whereas the second approach involved the use of a standard 
Gaussian RPMM to cluster subjects using their average gene 
expression over time. We hereafter refer to these approaches 
as Time0RPMM and AvgRPMM, respectively. We also 
compared TC-RPMM to two approaches based on K-means 
clustering, Time0Kmeans and AvgKmeans, which are similar 
to the Time0 and Average RPMM methods described above, 
substituting K-means clustering for RPMM. When applying 
K-means clustering, we assumed that the true number of 
clusters was known; that is, K was correctly specified for each 
of the K-means clustering approaches.

We considered 100 simulations for each of the simulation 
scenarios described in Table 1. For each simulation scenario, 
we assessed the extent to which the Time-Course, Time0, 
and Average RPMM methods were capable of correctly 
identifying true class membership on the basis of their 
gene expression trajectories. We used the Adjusted-Rand 
Index to assess the similarity between predicted and true 
class membership, as this method provides measure of the 
similarity between two data clusterings (i.e., predicted classes 

Figure 1 Average adjusted Rand-index as a function of the proportion of discriminating genes for simulation scenarios 1-3 when the true 
number is equal to 2 (i.e., K =2). Time-course recursively partitioned mixture model (TC-RPMM) (red line), Time0RPMM (blue dotted 
line), AvgRPMM (blue dashed line), Time0Kmeans (green dotted line), and AvgKmeans (green dashed line).
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versus true classes) corrected for chance (23). The maximum 
value of the Adjusted-Rand Index is 1.0, suggesting perfect 
concordance between two data clusterings. With respect to 
the linear mixed effects model that serves as the backbone for 
TC-RPMM (Eq. [6]), we assumed a random intercept only 
model and that Λ( ϕ )=I. 

Figures 1 and 2 depict the average Adjusted-Rand Index 
for each of the considered methods across the three different 
simulation scenarios. As noted from Figure 1, when the 
true number of classes was equal to 2, TC-RPMM tended 
to outperform each of the considered methods across all 
considered simulation scenarios. Not surprisingly, the 
degree to which TC-RPMM was able to recover true 
class membership is strongly related to the proportion of 
discriminating genes used in clustering analysis. However, 
when the true number of classes was equal to 2, TC-RPMM 
was able to reliably recover true class membership when the 
slopes and intercepts of as little as 10% of the genes differed 
between classes (Figure 1; Scenario 3). Also, not surprisingly, 
both the Time0RPMM and Time0Kmeans methods 
performed well in scenarios 1 and 3 (Figures 1 and 2). This 
is anticipated as both of these scenarios are characterized by 
differing intercepts in discriminating genes between classes 
and therefore differing baseline measurements of gene 

expression; situations for which these methods are well-suited 
to detect class separability. In these scenarios we note the 
tendency of K-means to outperform RPMM. This might be 
expected since K-means benefits from correct specification of 
K, whereas K is estimated in the RPMM framework.

When the true number of underlying classes is 
slightly larger (i.e., K =3 and 4) the Time0RPMM and 
Time0Kmeans methods exhibit a slight edge over TC-
RPMM in terms of correctly identifying true class 
membership when the fraction of discriminating genes 
is less than 70% for scenario 1 (Figure 2). However, as we 
might expect, these methods perform poorly in scenario 2 
when the intercepts of discriminating genes are the same 
between classes but their slopes differ. In Figure 2 it is also 
evident that degree to which TC-RPMM is able to recover 
true class membership strongly related to the proportion 
of discriminating genes used in clustering analysis. This 
highlights the importance of feature selection as a first 
step prior to clustering analysis. It is also worth noting that 
on average, TC-RPMM took 2.3, 4.0, and 4.0 minutes to 
converge when the true number of underlying classes was 2, 3, 
and 4, respectively. Details regarding the specifications of the 
computing cluster used for our simulation study can be found 
at the following web address (http://www.acf.ku.edu/wiki).

Figure 2 Average adjusted Rand-index as a function of the proportion of discriminating genes for simulation scenarios 1-3 when K =3 (top 
panel) and K =4 (bottom panel). Time-course recursively partitioned mixture model (TC-RPMM) (red line), Time0RPMM (blue dotted 
line), AvgRPMM (blue dashed line), Time0Kmeans (green dotted line), and AvgKmeans (green dashed line).

http://www.acf.ku.edu/wiki
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In addition to assessing the ability of TC-RPMM for 
recovering true class memberships across the various 
simulation scenarios, wse were also interested in its ability 
to correctly predict the true number of classes K and the 
accuracy of TC-RPMM in terms of the estimation of the 
fixed-parameters that defined each of the classes [i.e., Bk 
= (β0k, β1k)

T]. As noted in Figure 3, for simulation scenario 3 
TC-RPMM correctly predicted the true number of classes 
nearly one-hundred percent of the time when the number 
of discriminating genes was at least 30%. Although there is 
some attenuation of TC-RPMMs performance for simulation 
scenarios 1 and 2, generally speaking when the fraction of 
discriminating genes is at least 50% TC-RPMM tends to 
perform well with regard to correctly estimating the true 
number of classes (Figures S1-3). We also observed that across 
the simulation scenarios and number of underlying classes, 
TC-RPMM tended to result in unbiased estimates of the 
fixed-parameters (Figures S4-6).

We also conducted simulation studies to examine the 
robustness of TC-RPMM to misspecification of the underlying 
distribution for the longitudinal gene expression data. Along 
these lines, longitudinal gene expression data were simulated 
similar to that previously described (Table 1) using a multivariate 
T-distribution with low degrees of freedom (df =5) instead of 
a mulitvariate normal distribution (MVN). The results from 
this analysis are given in Figures S7,8 and demonstrate the 
robustness of TC-RPMM to misspecification of the underlying 
data generation model. Similar to the results obtained 
when the data were simulated from a MVN (Figures 1,2),  
TC-RPMM performs well across all scenarios in terms of 

correctly recovering true class memberships, the degree 
depending on the fraction of discriminating genes.

Lastly,  since our previous simulations involved 
generating longitudinal gene expression data from a MVN 
with a compound symmetric covariance structure, we also 
conducted additional simulation studies where expression 
data was simulated from a MVN with an autoregressive 
order 1 [AR(1)] covariance structure; a potentially more 
likely covariance-structure for data obtained in a real 
longitudinal study of gene expression. The correlation 
between gene expression measurements at time points s and 
t was assumed to be ϕ|s–t|, where ϕ=0.5 and ϕ=0.9 were both 
considered. Generally speaking, increased autocorrelation 
between successive gene expression measurements (i.e., as 
ϕ was increased toward 1) corresponded to an increased 
ability of TC-RPMM to accurately recover the true class 
memberships of the subjects being clustered (Figure 4).

Data application

Because our simulation studies demonstrated that TC-
RPMMs ability to recover true class memberships 
depended heavily on the number of discriminating genes, 
underscoring the importance of feature selection prior to 
clustering analysis, and because a common objective of 
clustering is to identify clusters that associate with some 
phenotype(s) of interest, we utilized a semi-supervised 
feature selection strategy (11) for identifying clusters that 
associate with time-to-respiratory recovery. Figure 5 depicts 
a diagram illustrating our semi-supervised procedure, as 

Figure 3 Number of predicted classes obtained from time-course recursively partitioned mixture model (TC-RPMM) as a function of the 
proportion of discriminating genes for simulation scenario 3. (A) true number of simulated class is equal to 2; (B) true number of simulated 
classes is equal to 3; and (C) true number of simulated classes is equal to 4.

A B C
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Figure 4 Average adjusted Rand-index as a function of the proportion of discriminating genes for simulation scenario 2 when gene 

expression data was simulated with a within-subject compound symmetric, AR(1) ϕ =0.5 , and AR(1) ϕ =0.9 covariance structure.

Figure 5 Diagram illustrating the semi-supervised analysis of the Glue study data. (I) Observations in the Glue study were first randomly 
split into training and testing sets; (II) using the training data only, the association between expression trajectory and time-to-respiratory 
recovery was assessed for each of the J=20,455 probe-sets; (III) time-course recursively partitioned mixture model (TC-RPMM) was 
then fit to the training data using the M probe-sets whose expression trajectory was most associated with time-to-respiratory recovery (M 
determined using a nested cross-validation procedure); (IV) the resulting solution was then used in conjunction with an empirical Bayes 
classifier to predict class membership for the observations in the testing data.
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applied to the Glue study data. The first step involved 
randomly splitting the full Glue study data set into 
equally sized training and testing sets. Hence, there were 
70 subjects randomly allocated to both the training and 
testing sets. The purpose of the training data is to train a 
classifier, which is then subsequently validated using the 
remaining observations in the independent testing data set. 
After randomly splitting the full data in to a training set 
and independent testing set, we examined the association 
between expression trajectory and time to respiratory 
recovery for each of the 20,455 probe-sets using the training 
data only. Since microarray data were collected over a time-
course in the Glue study, thus giving rise to time-dependent 
measurements, we utilized the method of Rajicic et al. [2006] 
for testing the association between expression trajectory and 
time to respiratory recovery (24). Briefly, this method utilizes 
a random effects model for imputing missing data at the time 
of an event by modeling unknown values using measurements 
up to that time. We thus obtained test-statistics for each of 
the 20,455 probe-sets, where each test-statistic reflected the 
extent to which expression levels associated with the time-
to-respiratory recovery. We then ranked the probe-sets on 
the basis of the absolute value of their test-statistics and 
selected the top five probe-sets for subsequent clustering of 
the training data via the proposed TC-RPMM. The number 
of top ranking probe-sets used for clustering the training data 
(in this case 5) was selected using the nested cross-validation 
procedure described in (11). As in our simulation studies, we 
assumed a random intercept only model and independent 
serial correlation structure (i.e., Λ(ϕ)=I). Applying the 
specified TC-RPMM to the training data using the 5 probe-

sets whose expression trajectory was most significantly 
associated with time to respiratory recovery resulted in 
two predicted classes. Based on the parameter estimates 
obtained from the TC-RPMM solution fit to the training 
data, a naive Bayes procedure (7) was used to predict class 
membership for the observations in the testing set using the 
same 5 previously identified probe-sets. We then assessed the 
association between the predicted classes in the testing data 
and time to respiratory recovery to determine the utility of 
five identified probe-sets in defining phenotypically important 
classes. The Kaplan-Meier curves stratified by predicted class 
for the observations in the testing set are given in Figure 6 and 
show considerable differences in time to respiratory recovery 
between the two predicted classes. As noted in Figure 6, the 
median time-to-respiratory recovery for subjects predicted 
to be class 1 was estimated to be 9 days, which is significantly 
longer than the estimated median survival for subjects in class 2, 
3-day (log-rank P value <0.0001).

As there are a number of factors that are capable of 
confounding the association between predicted class and time 
to respiratory recovery, we also fit a Cox-proportional hazards 
model (25) to examine the association between predicted 
class in the testing data, controlled for age, gender, and injury 
severity score (ISS). In the Glue study, the ISS was assessed 
for each patient upon hospital admission and represents an 
anatomical scoring system that provides an overall score for 
patients with multiple injuries. The ISS takes on values from 
0-75, with larger scores representing more severe injuries. 
As noted in Table 2, predicted class membership in the 
testing data remained significantly associated with time to 
respiratory recovery adjusting for potential confounders.

Lastly, we examined the differences in expression and 

Figure 6 Kaplan-Meier curves stratified by predicted class for the 
observations in the independent testing data.

Table 2 Results examining the association between predicted 
class in the testing data and time-to-respiratory recovery. 
Obtained from fitting a Cox-Proportional Hazards Model to 
the testing data using class membership assignment as factor and 
controlled for age, gender, and ISS. Class 1 and Gender = Female 
were used as the reference group. The estimates provided in the 
table below represent the HR estimates

Covariate HR estimate 95% CI for HR P value

Class 2.32 [1.32, 4.08] 0.003

Age 1.00 [0.98, 1.02] 0.898

Gender 0.89 [0.53, 1.47] 0.636

ISS 0.97 [0.95, 0.99] 0.016

HR, hazard ration; ISS, injury severity score.



228 Koestler et al. Time-course RPMM

© Pioneer Bioscience Publishing Company. All rights reserved. Transl Cancer Res 2014;3(3):217-232www.thetcr.org

expression trajectories between the two predicted classes 
in the testing data among the five identified probe-sets 
from the semi-supervised TC-RPMM clustering analysis. 
This was accomplished by fitting a random intercept 
model to the testing data with main effect terms for 
predicted class and time as well as the interaction term 
between time and predicted class. The results of this 
analysis are given in Table 3, and show statistically significant 
differences in expression and expression trajectory between the 
two classes for a number of probe-sets. The subject-specific 
expression trajectories and estimated expression trajectories for 
the observations in the testing data are given Figure 7. As noted 
from Table 3, probes 213349_at, and 224881_at (associated with 
genes TCMM1 and VKORC1L1, respectively) were associated 
with significant differences in both baseline expression as well as 
expression changes over time between the two predicted classes. 
Moreover, we noted that Class 2 had a significant decreased 
expression of probe 207329_at, which is associated with gene 
MMP8. Although there were no significant differences in 
baseline expression or changes in expression over time between 
the two predicted classes for probes 226248_s_at and 243349_

at (both associated with gene KIAA1324), the expression of both 
probes increased significantly over time.

Discussion

While studies utilizing large-scale microarray data collected 
from a static viewpoint have contributed greatly to our 
understanding of molecular biology, temporal microarrays offer 
a unique opportunity to examine the dynamic behavior of 
gene expression, providing additional insight surpassing that 
which can be gleaned from static microarray data. Although 
the literature abounds with statistical methodologies for 
static microarray data, methods for temporal microarray data 
are generally lacking. While methods have been proposed 
for detecting expression changes over time within a single 
biological group or expression changes over time between 
two or more groups (26), much less work has been done 
to address the issue of clustering time-course microarray 
data. Moreover, the work that has been done with respect to 
clustering time-course microarray data has mostly focused on 
the clustering of genes to determine groups of co-expressed 

Table 3 Results examining the difference in expression trajectories between the two predicted classes in the testing data

Probe ID Gene symbol Term Estimate Standard error P value

213349_at TMCC1 Intercept 7.389 0.067 <0.0001

Time 0.007 0.006 0.266

Class 0.432 0.097 <0.0001

Time × Class –0.04 0.017 0.023

226248_s_at KIAA1324 Intercept 7.516 0.204 <0.0001

Time 0.077 0.012 <0.0001

Class 0.334 0.288 0.249

Time × Class 0.048 0.034 0.16

224881_at VKORC1L1 Intercept 6.918 0.08 <0.0001

Time 0.038 0.006 <0.0001

Class –0.248 0.114 0.034

Time × Class 0.046 0.019 0.014

207329_at MMP8 Intercept 9.599 0.217 <0.0001

Time –0.042 0.026 0.109

Class –2.364 0.321 <0.0001

Time × Class 0.104 0.074 0.162

243349_at KIAA1324 Intercept 6.174 0.049 <0.0001

Time 0.012 0.004 0.001

Class –0.043 0.069 0.538

Time × Class 0.002 0.01 0.849

Class 1 represents the referent group.



229Translational Cancer Research, Vol 3, No 3, June 2014

© Pioneer Bioscience Publishing Company. All rights reserved. Transl Cancer Res 2014;3(3):217-232www.thetcr.org

genes with respect to their temporal expression patterns. As 
is often the case with static microarray data, interest is often 
centered on the clustering of subjects on the basis of their 
genomic features and the subsequent study of the phenotypic 
disparities between the resulting classes. With this in mind, 
we sought to develop a methodology for clustering subjects 
based on time-course microarray data. Our approach for 
doing so is based on the philosophy that each subject belongs 
to a particular class, among set of classes that are uniquely 
characterized by differences in gene expression trajectories. 
We however note the existence of other philosophies for 
clustering subjects on the basis of time-course microarray data. 
For example, one other philosophy involves the notion that 
subjects can alternate between two or more classes throughout 
time. This so-called “Markov” philosophy has been  
explored (27) for clustering genes using temporal patterns 
in gene expression and represents an attractive option for 
the purposes of clustering subjects based on time-course 
microarray data. Our means of addressing the former 
philosophy involved a modification of the existing RPMM 
formulation, whereby we integrated mixed-effect model 

framework for characterizing temporal expression patterns. 
We note that the model-based nature of RPMM makes it 
relatively straightforward to deal with mixed-effects models in 
a way that would be challenging with nonparametric clustering 
methods. The proposed TC-RPMM allows one to cluster 
subjects on the basis of their gene expression trajectories and 
does not require “uniformly” sampled data, which are common 
in longitudinal studies involving human subjects. We note 
that the TC-RPMM is not intended to represent a forecasting 
or prediction methodology, wherein temporal patterns of 
gene expression are used to predict future outcomes, however 
treatment of this problem has been examined (28). The utility 
of the proposed methodology lies its ability to detect distinct 
classes that are characterized by the temporal patterns in 
expression across a number of different genes. Investigating 
the aggregate expression profiles within and between classes 
can offer valuable insight toward the underlying biological 
processes that drive phenotypic disparities between the 
resulting classes. Such information may then be able to guide 
the development of novel diagnostic tools and/or more 
targeted theraputics.

Figure 7 Subject-specific and estimated gene expression trajectories among the observations in the testing set. Dotted lines indicate the 
subject-specific gene expression trajectories and solid lines represent the estimated gene expression trajectories for genes: (A) TMCC1; (B) 
KIAA1324; (C) VKORC1L1; (D) MMP8; and (E) KIAA1324. Class 1 = red and Class 2 = blue.
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We investigated the performance of the proposed TC-
RPMM using both simulation studies and a data application. 
The simulation studies encompassed several different 
scenarios and aimed to investigate the ability of TC-RPMM 
for correctly recovering true class memberships when the 
expression trajectories that characterized those classes differed. 
TC-RPMM was benchmarked against two variations based 
on the standard RPMM and K-means clustering—variations 
that are often used in practice for clustering time-course 
microarray data, due to the lack of methods with a framework 
capable of handling the complexities inherent to longitudinally 
collected microarray data. The results of our simulation studies 
demonstrated good performance of TC-RPMM in terms 
of accurately clustering subjects on the basis of their gene 
expression trajectories and showed that TC-RPMM remained 
robust to departures in the underlying data generation model. 
Importantly, our simulation studies highlight the inaccuracies 
and inefficiency of methods that do not appropriately account 
for the characteristics of time-course microarray data. Our 
simulation studies also demonstrated that TC-RPMMs ability 
accurately cluster subjects depended heavily on the number of 
discriminating genes; a testament to the importance of feature 
selection as prior to clustering analysis. While a full treatment 
of feature selection is beyond the scope of the present 
manuscript, we refer interested readers to (29-31).

The goal of our data application was to identify and validate 
profiles of temporal gene expression that are associated with 
time to respiratory recovery. To address this, we used a semi-
supervised feature selection strategy coupled with the use TC-
RPMM for clustering subjects on the basis of their longitudinal 
gene expression profiles. This analysis revealed two classes, 
which were defined by the temporal expression patterns 
of five unique probe-sets. As noted, Class 2 was associated 
with a significantly decreased time to respiratory recovery 
compared to Class 1 (log-rank P value <0.0001), which 
remained significant after adjusting for potential confounders 
(Cox-proportional hazards P value =0.003). Using the testing 
data set, an examination of the expression trajectories of the 
five identified probe-sets showed that several probes were 
associated with baseline differences in gene expression and/
or differences in expression trajectories between the two 
classes. In particular, probes 224881_at and 207329_at, 
associated with genes VKORC1L1 and MMP8 respectively, 
have been previously implicated in wound healing processes 
and inflammation. Specifically, VKORC1L1, the paralog of 
VKORC1, has been suggested to have a synergistic relationship 
with SERP1 in eliminating reactive oxygen species (ROS) (32). 
The observation that ROS have been implicated in modulating 

inflammatory response under acute- and chronic-injury 
conditions (33) may explain the role of VKORC1L1 in defining 
classes with significantly different times to respiratory recovery. 
Additionally, MMP8 has been shown to play a crucial role in 
wound healing. In particular, inflammatory cells produce the 
necessary levels of MMP8 to complete the healing process (34). 
As a result of this finding, we would expect MMP8 to be over-
expressed among subjects with more severe injury—explaining 
the significant over-expression of this gene among subjects in 
Class 1, which was characterized by longer times to respiratory 
recovery. Thus, there is strong biologic plausibility to the 
genes identified by the proposed methodology.

One consideration regarding the proposed TC-RPMM 
is that it explicitly assumes a linear relationship between 
gene expression and time. Although several studies have 
modeled expression changes of time under the assumption 
of linearity (24), it is certainly possible that temporal 
expression patterns exhibit a non-linear behavior. The 
extent to which this is true however, may largely depend 
on the time scale of the study under consideration as well 
as the particular genes that are profiled. For instance the 
expression data used in our application represented a 
relatively short-time frame (blood was collected at 12 hours, 
1, 4, 7, 14, 21, and 28 days and subsequently profiled for 
gene expression). Although the expression patterns in this 
study were reasonably linear with respect to time (Figure 7), 
a study involving the examination of expression data over 
a longer time frame may be characterized by non-linear 
expression patterns over time. A possible solution to this 
issue involves the substitution of a non-linear mixed effects 
model for the linear mixed effects model in the proposed 
TC-RPMM. Alternatively, splines could be incorporated 
within the mixed effects model framework to treat the gene 
expression level as a continuous function of time without 
requiring the specification of a linear relationship. Possible 
options include B-splines (35) and smoothing splines (36), 
although the additional structure could add considerable 
computational burden. One other point of contention, 
which involves our data application, is that only time-course 
expression data up to the time of respiratory recovery 
was used for subsequent clustering. As such, it might be 
argued that final clustering solution is not reflective of true 
biological differences between the two groups, but rather 
driven by how much data was collected on a particular 
subject. We addressed this by refitting the TC-RPMM 
using all available microarray data for the subjects in our 
data, even if that data were collected post-respiratory 
recovery. The classes estimated from this analysis exhibited 



231Translational Cancer Research, Vol 3, No 3, June 2014

© Pioneer Bioscience Publishing Company. All rights reserved. Transl Cancer Res 2014;3(3):217-232www.thetcr.org

strong concordance with the previously estimated classes 
(Adjusted-Rand Index =0.8) and were similarly significantly 
associated with time to respiratory recovery (log-rank P value 
<0.0001). This suggests that the classes identified by our 
analysis are reflective of biological differences and are not 
driven by the amount of data collected for a particular subject.

Conclusions

In summary, the TC-RPMM methodology clusters subjects 
on the basis of their expression trajectory while allowing for 
correlation in repeated microarray measurements. Moreover, 
this approach does not require uniformly sampled data and 
therefore represents an attractive clustering methodology 
for clustering subjects based on time-course microarray 
data. R-code for implementing the proposed TC-RPMM is 
available from the first author by request.
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Supplementary

Figure S1 Number of predicted classes obtained from time-course recursively partitioned mixture model (TC-RPMM) as a function of the 
proportion of discriminating genes when the true number of underlying classes is equal to 2 (i.e., K =2).

Figure S2 Number of predicted classes obtained from time-course recursively partitioned mixture model (TC-RPMM) as a function of the 
proportion of discriminating genes when the true number of underlying classes is equal to 3 (i.e., K =3).
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Figure S3 Number of predicted classes obtained from time-course recursively partitioned mixture model (TC-RPMM) as a function of the 
proportion of discriminating genes when the true number of underlying classes is equal to 4 (i.e., K =4).

Figure S4 Bias in the estimation of the slope and intercept parameters (Eq. [6]) from time-course recursively partitioned mixture model 
(TC-RPMM) as a function of the proportion of discriminating genes when the true number of underlying classes is equal to 2 (i.e., K =2).
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Figure S5 Bias in the estimation of the slope and intercept parameters (Eq. [6]) from time-course recursively partitioned mixture model 
(TC-RPMM) as a function of the proportion of discriminating genes when the true number of underlying classes is equal to 3 (i.e., K =3).

Figure S6 Bias in the estimation of the slope and intercept parameters (Eq. [6]) from time-course recursively partitioned mixture model 
(TC-RPMM) as a function of the proportion of discriminating genes when the true number of underlying classes is equal to 4 (i.e., K =4).



Figure S8 Average adjusted Rand-index as a function of the proportion of discriminating genes for simulation scenarios 1-3 when K =3 (top 
panel) and K =4 (bottom panel). Longitudinal gene expression data was simulated from a multivariate T-distribution with degrees of freedom 
equal to five. Time-course recursively partitioned mixture model (TC-RPMM) (red line), Time0RPMM (blue dotted line), AvgRPMM (blue 
dashed line), Time0Kmeans (green dotted line), and AvgKmeans (green dashed line).

Figure S7 Average adjusted Rand-index as a function of the proportion of discriminating genes for simulation scenarios 1-3 when the true 
number is equal to 2 (i.e., K =2). Longitudinal gene expression data was simulated from a multivariate T-distribution with degrees of freedom 
equal to five. Time-course recursively partitioned mixture model (TC-RPMM) (red line), Time0RPMM (blue dotted line), AvgRPMM (blue 
dashed line), Time0Kmeans (green dotted line), and AvgKmeans (green dashed line).


