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Background: Colorectal cancer is one of the most prevalent causes of cancer death. It has been studied 
extensively for a long time, and numerous genetic and epigenetic events have been associated with the 
disease. However, its molecular mechanisms are still unclear. High-throughput metabolomics data, 
combined with customized computational systems modeling, can assist our understanding of some of these 
mechanisms by revealing connections between alterations in enzymatic activities and their consequences for 
a person’s metabolic profile. Of particular importance in this context is purine metabolism, as it provides the 
nucleotides needed for cell proliferation.
Methods and findings: We employ a computational systems approach to infer molecular mechanisms 
associated with purine metabolism in colorectal carcinoma. The approach uses a dynamic model of purine 
metabolism as the simulation system and metabolomics data as input. The execution of large-scale Monte 
Carlo simulations and optimization with the model permits a step-wise reduction in possibly affected enzyme 
mechanisms, from which likely targets emerge. 
Conclusions: According to our results, some enzymes in the purine pathway system are very unlikely the 
targets of colorectal carcinoma. In fact, only three enzymatic steps emerge with statistical confidence as most 
likely being affected, namely: amidophosphoribosyltransferase (ATASE), 5'-nucleotidase (5NUC), and the 
xanthine oxidase/dehydrogenase (XD) reactions. The first of these enzymes catalyzes the first committed step 
of de novo purine biosynthesis, while the other two enzymes are associated with critical purine salvage pathways. 
The identification of these enzymes is statistically significant and robust. In addition, the results suggest 
potential secondary targets. The computational method cannot discern whether the inferred mechanisms 
constitute symptoms of colorectal carcinoma, or whether they might be causative and critical components of 
the uncontrolled cellular growth in cancer. The inferred molecular mechanisms present testable hypotheses 
that suggest targeted experiments for future studies of colorectal carcinoma and might eventually lead to 
improved diagnosis and treatment. 
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Introduction

Colorectal cancer is characterized by uncontrolled cell 
growth in the colon or rectum. About 140,000 people were 
diagnosed with colorectal cancer, and almost 50,000 people 
died of the disease in 2011, in the US alone (1). Based on 
rates from 2007-2009, 5% of US men and women born 
today are expected to be diagnosed with colorectal cancer 
during their lifetimes (2). Worldwide, colorectal cancer is 
among the top three causes of cancer in both women and 
men (3), and, together with lung, stomach, and liver cancer, 
is the most common cause of cancer death.

Colorectal cancer has been extensively investigated in the 
laboratory and the clinics. Due to available technologies, 
most of this research has focused on genetic and epigenetic 
aspects. Interestingly, the average colorectal cancer case 
exhibits only one or two oncogene mutations, which 
are typically accompanied by several tumor suppressor 
mutations; by contrast, epigenetic alterations are quite 
frequent (4). This finding is important because a single 
epigenetic event can cause alterations in the expression of 
hundreds of genes. In particular, methylation of microRNA 
genes can alter the expression of these non-coding sequences 
and secondarily change the expression of many protein-
coding genes that are their targets. An example for such 
a microRNA is miR-137, whose CpG island methylation 
occurs early in the majority of colorectal cancer cases and 
alters the expression of about 500 target genes (5). This 
fact raises important biological questions, such as the 
following. Are changes in each one of these 500 target 
genes significantly related to the onset and/or progression 
of carcinoma? Which apparently affected genes are critical? 
Answering these questions will not only help us gain deeper 
insights into the molecular mechanisms of cancer, but might 
also facilitate the development of targeted diagnoses or 
medications for colorectal cancer.

Various high-throughput “-omics” datasets have been 
generated over the past decade and are very useful for 
seeking possible answers to the above questions. Among 
these -omics data, metabolomics profiles are especially 
useful because they can be used to connect actual function, 
as seen in changes in metabolites, with molecular 
mechanism in the form of changes in enzymatic activities. 
This connection is implicitly buried within the data 
and can hardly be extracted with intuition or laboratory 
experiments. However, it can be inferred to some degree 
with computational methods, which are proposed here. 

We apply such an approach to colorectal carcinoma, 

using mathematical and computational methods, which we 
have detailed elsewhere in a different context (6). We focus 
particularly on purine metabolism, because it generates 
nucleotides that cancer cells require in large amounts (7-9). As 
Otto Warburg noticed as early as 1926 (10,11), cancer relies on 
altered cellular metabolism for its uncontrolled cellular growth. 

For colorectal cancer, various metabolomics platforms 
have been developed; they include nuclear magnetic 
resonance, gas-chromatographic mass spectrometry, 
liquid chromatography mass spectrometry, capillary 
electrophoresis mass spectrometry, Fourier transform 
ion cyclotron resonance mass spectrometry, and ion 
mobility mass spectrometry. As a consequence, dozens 
of metabolomics datasets for colorectal cancer have been 
generated in recent years. These datasets contain enormous 
information, which however is implicit and must be 
extracted with computational means.

To discover alterations in enzyme activities that can 
potentially effect the observed changes in a metabolomics 
profile, a customized modeling framework is required that 
includes both enzymes and metabolites as its components 
and allows the inference of one from the other. Almost by 
necessity, such a modeling framework must be a dynamical 
model of a metabolic pathway in the format of ordinary 
differential equations (ODEs). Here, we employ such a 
model (12) to investigate purine metabolism, which exhibits 
increased activity in colorectal carcinoma, as it provides 
ribonucleotides and deoxyribonucleotides that are urgently 
needed for cell proliferation. With metabolomics data as 
input and such a mathematical model as a computational 
platform, it is indeed possible to identify sets of enzymes 
that can cause observed changes in metabolic profile, if 
their activities are altered. In this study, we apply such an 
approach to study colorectal carcinoma cases. 

Methods

To infer molecular mechanisms of colorectal carcinoma, we 
need suitable metabolomics data from normal and tumor 
tissues, a mathematical model of purine metabolism, and 
a customized computational method. We describe these 
components in the following sections.

Metabolomics data 

Metabolomics data for colorectal carcinoma were 
obtained by Hirayama et al. (8), who sampled tumor and 
surrounding normal tissues from 16 colorectal carcinoma 
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patients. Metabolites in these samples were analyzed and 
measured with capillary electrophoresis time-of-flight 
mass spectrometry. Here we focus on data associated with 
purine metabolism; they are summarized in Table 1. As one 
might expect, not all metabolites in the purine pathway 
were measured, and not all measured metabolites showed 
statistically significant alterations in tumor samples 
compared to normal samples. Hirayama’s experimental 
data are used here for the inference of molecular 
mechanisms in this study. 

Mathematical model of purine metabolism 

Purine metabolism constitutes a complex and highly 
regulated pathway system (Figure 1). Among other products, 
it is the main source for purine nucleotides that are needed 
for DNA and RNA synthesis. Due to its central importance, 
deficits in purine metabolism are associated with a number 
of human diseases, including cancer.

As Figure 1 shows, the system contains a main de novo 
synthesis route, as well as salvage pathways for recycling 
purine bases. The de novo synthesis begins with ribose-
5-phosphate (R5P) and involves several enzymatic steps, 
which are collectively shown as red arrows in Figure 1. 
As an alternative, purine bases can be recycled through a 
salvage pathway (green arrows in Figure 1). Uric acid (UA), 
xanthine (Xa), hypoxanthine (HX), adenine (Ade), and some 
other metabolites leave the system. 

Curto and coworkers developed a mathematical model of 
human purine metabolism [(12-14), see also (15)]. This model 
consists of a system of ODEs with 16 dependent variables 
and 37 fluxes, expressed in the format of Biochemcial Systems 
Theory [e.g., (15-20)]. R5P and Pi are treated as independent 
variables and are thus not changed during model simulations. 
Curto’s results showed that the system can tolerate quite large 
changes in metabolite levels and still return to its steady state. 
With a low sensitivity profile, the system is also structurally 
robust. Curto’s dynamical model is used here directly, and 
without changes (14).

Computational inference approach 

The proposed approach uses the mathematical model of 
purine metabolism and Hirayama’s metabolomics data for 
colorectal carcinoma as input, and applies a multi-step 
strategy to narrow down reaction steps likely to be affected 
by cancer. While technical details were described in a recent 
report focusing on a different context (6), it is necessary 

for understanding the following that we review the core 
concepts of the method.

Using model simulations, it is easy to alter enzyme 
activities one by one, or many, or all of them simultaneously, 
and to assess how the perturbation changes the metabolite 
levels at the steady state. Because this procedure is 
straightforward, it permits large-scale repetitions of this 
type of assessment in the form of Monte-Carlo simulations. 
We executed millions of such simulations, each time varying 
the perturbations. As a consequence, statistically robust 
conclusions are reached instead of just a single outcome.

Specifically, we implemented the approach as a three-
step strategy. The purpose of the 1st step is to reduce the 
number of candidate sites targeted by colorectal cancer with 
consideration of only qualitative information, namely the 
direction (increase or decrease) in the resultant changes in 
metabolites at the steady state. We first allowed all enzymes 
and reaction rates of non-enzymatic reactions to change 
simultaneously, and compared the simulation results with the 

Table 1 Metabolomics data relevant to purine metabolism for 
colorectal cancer%

Metabolite Normal colon# Colon tumor#

Adenine 2.1625 3.6867&

Hypoxanthine 185.0000 800.5625&

Guanine 2.6563 3.4063

Adenosine 19.9063 22.2938

Inosine 131.3125 169.8750

Guanosine 13.8563 16.0188

S-adenosyl-L-methionine 19.0563 48.1875&

Inosine monophosphate 195.0625 176.375

Adenosine monophosphate 535.1250 710.1875

Guanosine monophosphate 114.6250 184.9375&

Phosphoribosylpyrophosphate N.D. N.D.

Adenosine diphosphate 269.8063 317.8938

Guanosine diphosphate 53.4375 75.5625&

Deoxyadenosine triphosphate 2.0100 1.7375

Adenosine triphosphate 206.1875 126.8125

Guanosine triphosphate 35.3250 30.4188
%, metabolomics data are from Hirayama’s measurements (8). 

Each value in the table is an average of samples from normal 

tissues or tumor tissues; #, unit: nmol/g tissue; &, statistically 

significant difference (paired t-test & Wilcoxon matched pairs 

test, P<0.05) in metabolite level between colon tumor and 

normal colon tissue.
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reported metabolomics data. Out of millions of simulations, 
we retained only those that showed the same type of change 
(increased or decreased) in significantly altered metabolites 
from their nominal levels as observed in the tumor tissues, 
according to the metabolomics data. After many simulations, 
the values of each parameter in the sets surviving this 
filtering form a frequency distribution. A non-skewed 
distribution (uniform, Gaussian, or otherwise symmetric) 
suggests that the parameter is not likely affected by the 
tumor, because higher or lower values are similarly found 
in the filtered solutions. By contrast, if the observed profile 
is only reachable if a certain parameter value is (essentially) 

always increased or (essentially) always decreased, some 
unknown constraints are presumably in effect that reject 
cases pointing in the opposite direction. Using this criterion 
of distributional skewness reduces the number of candidate 
parameters immensely. Only parameters surviving this first 
filtering step are considered further. 

For step 2, we use quantitative concentration values 
from the metabolomics data. This criterion is different 
from the qualitative criterion for the 1 st step and 
much more stringent. Specifically, we consider only 
parameters remaining from the initial filtering, alter 
these through further Monte-Carlo simulations, and 

Figure 1 Human purine metabolism. Human purine metabolism constitutes a very important and complex metabolic pathway. It contains 
a de novo synthesis pathway (red arrows) and salvage pathways (green arrows) for purine bases. Reactions are represented with arrows. 
Metabolites are shown in dashed boxes and enzymes are annotated as italic EC numbers. Table 2 lists enzyme names and their abbreviations. 
The map is adapted from Curto’s work (12-14). Regulations are omitted for a clearer visualization. PRPP, phosphoribosylpyrophosphate; 
IMP, inosine monophosphate; S-AMP, adenylosuccinate; Ado, adenosine; AMP, adenosine monophosphate; ADP, adenosine diphosphate; 
ATP, adenosine triphosphate; SAM, S-adenosyl-L-methionine; Ade, adenine; XMP, xanthosine monophosphate; GMP, guanosine 
monophosphate; GDP, guanosine diphosphate; GTP, guanosine triphosphate; dAdo, deoxyadenosine; dAMP, deoxyadenosine 
monophosphate; dADP, deoxyadenosine diphosphate; dATP, deoxyadenosine triphosphate; dGMP, deoxyguanosine monophosphate; dGDP, 
deoxyguanosine diphosphate; dGTP, deoxyguanosine triphosphate; RNA, ribonucleic acid; DNA, deoxyribonucleic acid; HX, hypoxanthine; 
Ino, inosine; dIno, deoxyinosine; Xa, xanthine; Gua, guanine; Guo, guanosine; dGuo, deoxyguanosine; UA, uric acid; R5P, ribose-5-
phosphate.
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calculate the difference between each simulation result 
and the metabolomics data in terms of relative changes in 
metabolites levels. We determine the overall fitness of a 
simulation result with respect to metabolomics data as the 
2-dimensional Euclidean norm of their differences and 
select one thousand sets of parameter values with the best 
fitness values out of one million simulations for the next 
step. Thus, the main purpose of the 2nd step is to shrink the 
space of feasible parameter values.

The selected top one thousand sets of parameter values 
enter into the 3rd step. They are used as initial parameter 
values for an optimization procedure based on a genetic 
algorithm. This optimization procedure generates a new set 
of parameter values with even better fitness than those sets 
from step 2. Among these, we select a subset of parameter 
values that make the model system fit the recorded data 
best. Finally, we generate distributions of parameter 
values from this subset and analyze the skewness for each 
parameter. This step is designed to identify the most likely 
sites affected by cancer. Not only the locations of the 

targeted sites can be inferred in this manner, but also the 
intensity of the effect at a site can be derived.

Results

In accordance with the three steps of the approach described 
in the Methods section, the results are divided into three parts.

Step 1 

Out of five million Monte Carlo simulations, we only 
retained those results that showed same direction of 
significant change (positive, increased; negative, decreased) 
as the observed changes in tumor tissues. This qualitative 
filtering resulted in an enormous reduction (almost 95%) 
from all initially simulated parameter sets (5,000,000 sets) 
into a much smaller feasible subpopulation (287,473 sets). 
For each model parameter in the latter sets, we generated 
a distribution of its values (Figure 2). These distributions 
allowed us to calculate their skewness coefficients. 

Figure 2 Distributions of values from the selected subpopulation parameter sets. Only simulation results were kept that show the same sign of 
change (+, increased; –, decreased) in significantly altered metabolites (in comparison with their nominal levels) as the changes in tumor tissues 
identified by metabolomics methods (8). Out of five million initial Monte Carlo simulations, a relatively small subpopulation (287,473 sets) 
was selected. X-axes are fold changes in parameter values with respect to their nominal levels. The parameters are associated with the 
following reaction steps: P1, phosphoribosylpyrophosphate synthetase; P2, amidophosphoribosyltransferase; P3, hypoxanthine-guanine 
phosphoribosyltransferase; P4, adenine phosphoribosyltransferase; P5, pyrimidine synthesis; P6, inosine monophosphate dehydrogenase; 
P7, guanosine monophosphate synthetase; P8, adenylosuccinate synthetase; P9, adenylosuccinate lyase; P10, guanosine monophosphate 
reductase; P11, adenosine monophosphate deaminase; P12, methionine adenosyltransferase; P13, protein O-methyltransferase; P14, 
S-adenosylmethionine decarboxylase; P15, 5'-nucleotidase; P16, 5'(3') nucleotidase; P17, diribonucleotide reductase; P18, adenosine 
deaminase; P19, RNA polymerase; P20, RNAses; P21, DNA polymerase; P22, DNAses; P23, xanthine oxidase/xanthine dehydrogenase; 
P24, guanine hydrolase; P25, hypoxanthine excretion; P26, xanthine excretion; P27, uric acid excretion.
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Parameters with essentially symmetric distributions 
(uniform, Gaussian, etc.) were excluded from further 
considerations. Table 2 shows the list of likely and unlikely 
target sites. The 13 parameters passing the filtering 
are associated with: phosphoribosylpyrophosphate 
synthetase (PRPPS) (P1), amidophosphoribosyltransferase 
(ATASE) (P2),  adenine phosphoribosyltransferase 
(APRT) (P4) ,  pyrimidine synthesis  (PYRS) (P5) , 
inosine monophosphate dehydrogenase (IMPD) (P6), 
adenylosuccinate synthetase (ASUC) (P8), methionine 
adenosyltransferase (P12), protein O-methyltransferase 

(MT) (P13), S-adenosylmethionine decarboxylase (SAMD) 
(P14), 5'-nucleotidase (5NUC) (P15), RNA polymerase 
(RNAP) (P19), RNases (RNAN) (P20), and xanthine oxidase/
dehydrogenase (XD) (P23). These 13 parameters were 
retained for the next step, while the remaining 14 parameters 
were henceforth excluded.

Step 2 

For the 2nd step, we ran one million simulations with 
perturbations affecting only the selected 13 parameters 

Table 2 Parameters are screened out based on five million Monte Carlo simulations

Enzyme or reaction Abbreviation EC Selected?%

Hypoxanthine-guanine phosphoribosyltransferase HGPRT 2.4.2.8 ×

GMP synthetase GMPS 6.3.5.2 ×

Adenylosuccinate lyase ASLI 4.3.2.2 ×

GMP reductase GMPR 1.7.1.7 ×

AMP deaminase AMPD 3.5.4.6 ×

5'(3') Nucleotidase 3NUC 3.1.3.31 ×

Diribonucleotide reductase DRNR 1.17.4.1 ×

Adenosine deaminase ADA 3.5.4.4 ×

DNA polymerase DNAP 2.7.7.7 ×

DNases DNAN # ×

Guanine hydrolase GUA 3.5.4.3 ×

Hypoxanthine excretion HX $ ×

Xanthine excretion X $ ×

Uric acid excretion UA $ ×

Phosphoribosylpyrophosphate synthetase PRPPS 2.7.6.1 √

Amidophosphoribosyltransferase ATASE 2.4.2.14 √

Adenine phosphoribosyltransferase APRT 2.4.2.7 √

Pyrimidine synthesis PYRS # √

IMP dehydrogenase IMPD 1.1.1.205 √

Adenylosuccinate synthetase ASUC 6.3.4.4 √

Methionine adenosyltransferase MAT 2.5.1.6 √

Protein O-methyltransferase MT & √

S-adenosylmethionine decarboxylase SAMD 4.1.1.50 √

5'-nucleotidase 5NUC 3.1.3.5 √

RNA polymerase RNAP 2.7.7.6 √

RNases RNAN # √

Xanthine oxidase or xanthine dehydrogenase XD 1.17.1.4 and 1.17.3.2 √
%, the selection is based on a qualitative comparison between simulation results and metabolomics data (8) to check if they 

exhibit the same sign of change (+, increased; –, decreased) in significantly altered metabolites from their nominal levels; #, 

multiple enzymes; $, non-enzymatic reaction; &, deleted entry.
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from step 1. For each simulation result, we computed its 
fitness with respect to the metabolomics data that exhibit 
alterations of metabolite levels in tumor tissues versus 
normal tissues. The resulting one million sets of parameter 
values were sorted according to their fitness in ascending 
order. The top one thousand sets were selected and entered 
into the 3rd step (Figure 3). The distribution of fitness values 

from these selected parameter sets has a mean value of 
175.7 (±19.2), which is in stark contrast to the value for the 
entire one million parameter sets: 1,771.4 (±3,618.1). Thus, 
this step of using quantitative information shrinks the space 
of parameter values enormously. 

Step 3 

An optimization procedure was run on the selected top 
one thousand parameter sets from the 2nd step. Specifically, 
the values of these parameters were used as the initial 
values for a genetic algorithm that generated one thousand 
fine-tuned parameter sets with improved fitness. The 
distribution of fitness values from the optimized parameter 
sets has a mean value of 126.9 (±209.3), which shows an 
overall improvement of fitness but spreads much wider 
than the original one thousand parameter sets. Among the 
optimized parameter sets, we chose the top one hundred 
sets with the best fitness (46.5±7.7, Figure 3) and calculated 
a skewness coefficient for each parameter (Table 3). The 
results suggest that just three enzymes emerge as most likely 
targets of colorectal carcinoma, namely: ATASE, 5NUC, 
and XD. The intensities of alterations, expressed as fold 
changes with respect to their nominal values, in cancer as 
opposed to normal tissue, at these sites were inferred as: 
2.337 (activation), 0.673 (inhibition), and 0.349 (inhibition), 
respectively.

Figure 3 Fitness of selected sets of parameter values. The original 
set (in red) contains the top one thousand sets of parameter values 
selected from the 2nd step, which shows a mean fitness of 175.7 
(±19.2). The optimized set (in green) represents the top one 
hundred parameter sets after an optimization procedure and has an 
overall improved fitness of 46.5±7.7.

Top 1,000
Sets

Top 100
Sets

250

200

150

100

50

0

Fitness

Table 3 Index of skewness of the selected parameters

Enzyme or reaction Abbreviation EC Index of skewness%

Phosphoribosylpyrophosphate synthetase PRPPS 2.7.6.1 0.267

Amidophosphoribosyltransferase ATASE 2.4.2.14 0.038$

Adenine phosphoribosyltransferase APRT 2.4.2.7 0.255

pyrimidine synthesis PYRS # 0.465

IMP dehydrogenase IMPD 1.1.1.205 0.418

Adenylosuccinate synthetase ASUC 6.3.4.4 0.304

Methionine adenosyltransferase MAT 2.5.1.6 0.159

Protein O-methyltransferase MT & 0.210

S-adenosylmethionine decarboxylase SAMD 4.1.1.50 0.219

5'-nucleotidase 5NUC 3.1.3.5 0.025$

RNA polymerase RNAP 2.7.7.6 0.437

RNases RNAN # 0.247

Xanthine oxidase or xanthine dehydrogenase XD 1.17.1.4 and 1.17.3.2 0.000$

%, the index shows the degree of asymmetry in the distribution between the activating section and the inhibitory section for a 

parameter; #, multiple enzymes; &, deleted entry; $, significance: index of skewness <0.05.
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As an illustration, we selected the first and last ranking 
parameter sets (1st and 100th) from the optimized one 
hundred sets and implemented them into the purine model. 
Figure 4 shows the simulated alterations of metabolites 
levels in tumor tissue and their comparisons with 
metabolomics data. Indeed, both parameter sets trigger 
comparable changes within the metabolites of the purine 
system, and these changes are very similar to the metabolic 
profile observed in colorectal carcinoma using capillary 
electrophoresis time-of-flight mass spectrometry. 

Conclusions and discussion

Many metabolomics studies of different types of cancers 
have been performed in recent times with different 
experimental platforms (7-9,21-26). Compared to other 
-omics high-throughput data, these metabolomics data 
have the unique advantage that they can be used to connect 
function, in the form of metabolites, with molecular 
mechanisms or strategies in the form of altered enzyme 
activities. This connection is initially not explicit, but 
we have shown here that it can be extracted from the 
metabolomics data, if a dynamic mathematical model and a 
customized computational inference strategy are available.

Here, we used this combined approach of systems biology 
to infer the molecular strategy with which colorectal carcinoma 
appears to modulate purine metabolism in order to increase 
the availability of nucleotides, which are required for cancer 
growth. Our combined approach provides a statistically robust 
conclusion. It seems difficult to imagine an experimental 
approach that could have revealed such a strategy.

Our approach initially allowed all processes within purine 
metabolism to be potential targets of colorectal cancer, but 
quickly narrowed down the domain of candidate targets 
and ultimately identified, in a statistically significant and 
robust fashion, three enzymes as most likely affected sites. 
These three enzymes are: amidophosphoribosyltransferase 
ATASE (EC: 2.4.2.14), which is considered the first 
committed and rate limiting step of de novo purine 
biosynthesis; 5'-nucleotidase (EC: 3.1.3.5), which catalyzes 
inosine monophosphate (IMP) to inosine (Ino) and 
guanosine monophosphate (GMP) to guanosine (Guo); 
and XD (EC: 1.17.3.2 and 1.17.1.4), which catalyzes HX 
to Xa and then to UA, as well as the oxidation of Ade to 
2,8-dihydroxyadenine and the excretion of them into urine. 

Among these three predicted targets, the activity of 
ATASE (EC: 2.4.2.14) is predicted to be elevated more 
than 2-fold in colorectal carcinoma (mean fold change: 
2.337±1.275). This result is easily interpreted as a higher 
activity increases the overall availability of purines. By 
contrast, the activity of 5NUC is reduced to two thirds 
(mean fold change: 0.673±0.195) of its normal level. This 
enzyme removes material from central purine metabolism 
to Ino and HX, from where much of it is oxidized to 
Xa. Thus, this enzyme siphons substrate away from 
nucleotide production. Similarly, the same enzyme removes 
phosphorylated guanosine, in direct competition with 
incorporation into RNA or DNA. Finally, the model analysis 
indicates that xanthine oxidase (XO) is reduced to one third 

Figure 4 Simulated alterations of metabolites levels in tumor 
tissues and their comparison with metabolomics data. The X-axis 
represents eight metabolites of the purine system, for which 
metabolomics data are available. For each metabolite, three bars 
are shown: blue for metabolomics measurements from capillary 
electrophoresis time-of-flight mass spectrometry, red for 1st set of 
the optimized one hundred parameter sets, and green for the 100th 
set of the optimized one hundred parameter sets. Some metabolites 
with no significant changes in the metabolomics data are close to 
zero and therefore not visible. As shown, these two representative 
parameter sets exhibit changes within the purine system in terms 
of the metabolic profile that are comparable to those observed 
in colorectal carcinoma (8). IMP, inosine monophosphate; Ado, 
adenosine; AMP, adenosine monophosphate; ADP, adenosine 
diphosphate; ATP, adenosine triphosphate; SAM, S-adenosyl-
L-methionine; Ade, adenine; GMP, guanosine monophosphate; 
GDP, guanosine diphosphate; GTP, guanosine triphosphate; dAdo, 
deoxyadenosine; dAMP, deoxyadenosine monophosphate; dADP, 
deoxyadenosine diphosphate; dATP, deoxyadenosine triphosphate; 
HX, hypoxanthine; Ino, inosine; dIno, deoxyinosine; Gua, guanine; 
Guo, guanosine; dGuo, deoxyguanosine.
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of its normal activity (mean fold change: 0.349±0.110). This 
enzyme competes with the enzyme hypoxanthine-guanine 
phosphoribosyltransferase [(HGPRT), EC: 2.4.2.8] for 
the substrate HX and excretes the substrate Ade for the 
enzyme APRT (EC: 2.4.2.7). Both enzymes are associated 
with the salvage of purine metabolism. HGPRT recycles 
material back to IMP, the center of purine metabolism. 
The flux through this process is increased if the activity of 
XO is strongly reduced. Expressed differently, a reduction 
in XO activity, as it is inferred here, increases the recycling 
of material toward added nucleotide production through 
the salvage pathway. Similarly, the dehydrogenase (EC: 
1.17.1.4) removes Ade irreversibly from the system instead 
of allowing it to return to the pool of adenosine and its 
phosphorylated forms. Thus, the purely computational 
model inferences, which were obtained without any bias by 
formerly infused information, interpretation or speculation, 
reveal three key processes for the increased production of 
nucleotides, which in retrospect are easy to explain, but 
were not necessarily easy to predict. 

Although the inferred significance of changes in these 
three enzymes is clear, our analysis suggests that changes in 
the three enzymes alone do not fully explain the observed 
metabolic alterations of the purine system in colorectal 
carcinoma. In addition to their modulations, about ten 
other enzyme activities appear to be altered. While these 
changes are of a much lesser degree, the affected secondary 
action sites are still of potential interest and deserve further 
study. At any rate, the inferences render it clear that it is not 
a single change that resets the normal metabolic profile in 
cancer, but that enzyme activity alterations are distributed 
among three main and ten secondary drivers.

The molecular mechanisms inferred in this study for 
colorectal carcinoma suggest functional, mechanistic 
connections between perturbed genes and proteins on the 
one hand and an altered profile of purine metabolites on 
the other. These predictions suggest specific research foci 
for biologists and clinicians interested in investigating the 
biochemical mechanisms leading to metabolic perturbations 
in colorectal cancer. More generally, the study improves 
our understanding of the pathology of the disease, and may 
thus aid in potentially better diagnoses and treatments. 
Intriguingly, the findings pose the question of whether 
it might be possible to counteract the alterations with 
subtle, but targeted drug treatments that could affect the 
primary and/or secondary action sites revealed here and 
thereby return the purine system to a close resemblance of 
normalcy.
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