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Introduction

Glioblastoma (GBM) is the most common primary brain 
tumor in adults, and has a high rate of mortality. Despite 

improvements in therapeutic strategies, its clinical outcomes 

remain poor, with a median survival time of approximately 

15 months (1). GBM cells exhibit aggressive behavior, 
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with high levels of invasion and diffuse infiltration into the 
surrounding brain parenchyma, which makes complete 
tumor resection impossible (2). Radiotherapy (RT) is an 
effective treatment modality for eliminating residual tumor 
cells. Unfortunately, most patients with GBM experience 
local recurrence at the original lesion sites where high doses 
of radiation were delivered, confirming the radioresistance 
of GBM (3). To further improve the efficacy of RT, the 
underlying mechanism of GBM radioresistance should 
be determined, and biomarkers for assessing treatment 
responses and prognosis must be identified. 

GBM cells coexist with non-tumor cells in a dynamic 
microenvironment, which promotes GBM proliferation, 
invasion, and survival. Numerous studies have shown that 
the intrinsic characteristics of GBM cells as well as their 
interactions with the microenvironment contribute towards 
GBM resistance to RT (4). The GBM microenvironment 
contains a diverse array of non-tumor cells, including 
immune cells, stromal cells, and endothelial cells, as well as 
extracellular matrix components. The two major types of 
cells in the GBM microenvironment are infiltrating immune 
cells (such as microglia, macrophages, lymphocytes, 
neutrophils, and dendritic cells) and stromal cells (such 
as neurons, astrocytes, and oligodendroglia) (5). Several 
findings have demonstrated the critical roles of immune and 
stromal cells in the prognostic assessment of tumors.

Using public databases and novel biological algorithms 
that provide survival estimates for patients, considerable 
progress has been made in predicting cancer prognosis 
based on clinical features and gene-expression profiles (6).  
The recently developed Estimation of STromal and Immune 
cells in MAlignant Tumor tissues using Expression data 
(ESTIMATE) algorithm can be used to evaluate stromal and 
immune scores, and to predict the infiltration of non-tumor 
cells based on their unique gene-expression signatures (7). 
The ESTIMATE algorithm has been applied for predicting 
prognosis and for identifying genetic alterations in many 
cancers, including GBM (8-10). Although Jia et al. identified 
genes with prognostic value in the GBM microenvironment, 
the relationship between microenvironment-related genes 
and GBM radioresistance is unclear (8). Thus, immune and 
stromal scores can be used to assess the radioresponse of GBM 
from a genome-wide perspective.

Here, we evaluated the associations between immune 
and stromal scores, and the clinical outcomes of patients 
with GBM undergoing RT (GBM-RT), using data from 
The Cancer Genome Atlas (TCGA) database and the 
ESTIMATE algorithm. We identified microenvironment-

related genes that correlated with radioresistance and a 
poor prognosis for GBM, which were validated using data 
from the Chinese Glioma Genome Atlas (CGGA) cohort. 
Understanding the relationship between the immune 
microenvironment and GBM radiosensitivity may aid the 
development of strategies to improve the efficacy of RT.

We present the following article in accordance with 
the MDAR reporting checklist (available at http://dx.doi.
org/10.21037/tcr-20-2476).

Methods

Databases

The RNA-sequencing (RNA-seq) data and clinical 
information for patients with primary GBM, including 348 
patients who underwent RT treatment and had detailed 
survival-time records, were retrieved from TCGA (https://
tcga-data.nci.nih.gov/tcga/). For the validation cohort, 
RNA-seq data and clinical information for patients with 
primary GBM, including 71 patients who underwent RT 
treatment and had detailed survival-time records, were 
extracted from the CGGA (http://www.cgga.org.cn/). The 
ESTIMATE algorithm was used to evaluate the proportion 
of non-tumor components in the tumor microenvironment 
according to their gene-expression signatures, which 
are represented by the ImmuneScore, StromalScore, 
and ESTIMATEScore (7).  The ImmuneScore and 
StromalScore of TCGA GBM cases were available from a 
public source website (https://bioinformatics.mdanderson.
org/estimate/). The study was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013).

Identification of differentially expressed genes (DEGs)

The limma package of R software was utilized to identify 
DEGs by comparing the high-score and low-score cases (11).  
Gene-expression levels with a |log2 (fold-change)| score of 
>1 and an adjusted (adj.) P value of <0.05 were considered 
significantly different. 

Heatmaps, volcano plots, and Venn diagrams

Heatmaps of DEGs were constructed using the ClustVis 
web tool (https://biit.cs.ut.ee/clustvis/), and volcano plots 
for DEGs were generated with GraphPad Prism. DEGs 
common to different groups were identified by generating 
Venn diagrams, which were created using an online analysis tool 

http://dx.doi.org/10.21037/tcr-20-2476
http://dx.doi.org/10.21037/tcr-20-2476
https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
https://bioinformatics.mdanderson.org/estimate/
https://bioinformatics.mdanderson.org/estimate/
https://biit.cs.ut.ee/clustvis/
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(https://bioinfogp.cnb.csic.es/tools/venny/index.html) (12).

Enrichment analysis of Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG)

The clusterProfiler, org.Hs.eg.db, enrichplot, and ggplot2 
packages of R software were used to perform GO and 
KEGG enrichment analysis of DEGs. GO categories were 
analyzed, including biological processes (BPs), molecular 
functions (MFs), and cellular components (CCs). Categories 
with P and q values of <0.05 were regarded as being 
significantly enriched.

Protein-protein interaction (PPI) network construction

The PPI network of the common DEGs was generated 
using the STRING database (http://string-db.org) (13). An 
interaction score of ≥0.4 was selected as the cutoff criterion. 
PPI network data were reconstructed using Cytoscape 
software to identify genes and to perform module analysis. 
Molecular Complex Detection was applied to detect the 
clusters in the network, and individual networks with more 
than 10 nodes were included.

Statistical analysis

Statistical analyses were conducted using R software (version 
4.0.0) and GraphPad Prism (version 7.0.0; GraphPad, Inc., 
La Jolla, CA, USA). Data for 348 patients with primary 
GBM (TCGA GBM database) were assigned high or 
low immune and stromal scores relative to the median 
ImmuneScore and StromalScore, respectively. Individual 
DEGs were grouped as having high or low expression relative 
to the median score of each individual gene-expression value. 
The Kaplan-Meier method was used for survival analysis and 
P<0.05 (determined with the log-rank test) was regarded as 
reflecting a statistically significant difference. To determine 
the prognostic values of DEGs, the survival package of R 
software was used for univariate Cox regression analysis, and 
P<0.05 was considered a significant difference. 

Workflow 

The workflow of the current study is shown in Figure S1. 
RNA-seq data and clinical information for 539 patients 
were downloaded from TCGA database, of which 348 cases 
undergoing RT were included in this study. ESTIMATE 

scores, including stromal and immune scores, were obtained 
using the gene expression data from GBM tumor tissues. 
The impact of ESTIMATE scores on the prognosis of 
patients with GBM-RT was investigated. Shared DEGs 
were obtained by intersection analysis between the PPI 
network and univariate Cox regression analyses. DEGs with 
prognostic value for RT were further validated using the 
CGGA GBM database.

Results

Tumor stromal and immune scores correlated with the 
clinical outcomes of patients with GBM-RT

To investigate correlations between the overall survival 
(OS) of patients with GBM-RT and their stromal/immune 
scores, TCGA data from 348 patients with GBM-RT were 
obtained and divided into high and low groups (RT+ stromal 
scorehigh, RT+ stromal scorelow, RT+ immune scorehigh, and 
RT+ immune scorelow groups), based on their stromal and 
immune scores. The median values of the stromal and 
immune scores were 84.5 and 966.78, respectively. Survival 
curves showed that patients with high stromal scores had a 
shorter OS than those with low stromal scores (Figure 1A,  
P=0.0166; log-rank test) and that patients with high immune 
scores tended to have a shorter median OS (Figure 1B,  
P=0.0661; log-rank test). These results indicate that the 
stromal or immune score plays a role in determining the 
clinical outcomes of patients with GBM-RT. Moreover, 
the stromal score showed greater prognostic value than 
the immune score and was more suitable for stratifying the 
radioresponses of patients with GBM.

Associations between gene-expression profiles and stromal 
and immune scores

To determine the gene expression profiles, differential analysis 
of 348 patients with GBM-RT was performed according 
to the stromal or immune scores. DEGs were identified 
using a threshold of |log2 (fold-change)| >1 and an adj. P 
value of <0.05. We identified 168 and 205 DEGs that were 
upregulated in the high-stromal score and high-immune 
score groups, respectively (Figure 1C,D, Figure S2A,B).  
Venn diagrams were used to identify critical genes relevant 
to the GBM microenvironment; 139 upregulated DEGs 
overlapped with the high-stromal and high-immune score 
groups, whereas 13 downregulated DEGs were identified 

https://bioinfogp.cnb.csic.es/tools/venny/index.html
http://string-db.org
https://cdn.amegroups.cn/static/public/TCR-20-2476-supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-20-2476-supplementary.pdf
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(Figure S2C,D).

Functional enrichment analysis of DEGs in patients with 
GBM-RT 

To analyze the underlying biological functions of DEGs, 
functional enrichment clustering of the 139 shared DEGs 
was performed. We identified 359, 36, and 62 GO terms 
representing BPs, MFs, and CCs, respectively, that were 
significantly enriched (Figure 2A,B, Figure S3, and Tables S1-S3;  
q<0.05 and adj. P<0.05). The top GO terms included 
antigen processing and presentation, response to interferon-
gamma, major histocompatibility complex (MHC) class 

II protein complex, peptide antigen binding, and immune 
receptor activity. KEGG analysis revealed enrichment 
of 56 pathways (q<0.05 and adj. P<0.05) involved in 
various aspects of inflammation and immunity, including 
Staphylococcus aureus infection, inflammatory bowel disease, 
the IL-17 signaling pathway, NF-κB signaling pathway, 
TNF signaling pathway, cytokine-cytokine receptor 
interaction, and Toll-like receptor signaling pathway  
(Figure 2C,D, Table S4). The results demonstrate that 
the biological functions of the DEGs were linked to 
inflammation or immune-related activities, indicating 
that inflammation or immune features in the GBM 
microenvironment mediate GBM radioresistance.

Figure 1 Correlation of stromal and immune scores with the survival of patients with GBM undergoing RT. (A) Kaplan-Meier survival 
analysis of patients with GBM-RT and high or low stromal scores relative to the median stromal score; P=0.0166, as determined by the 
log-rank test. (B) Kaplan-Meier survival analysis of patients with GBM-RT in high or low immune scores relative to the median immune 
score; P=0.0661, as determined by the log-rank test. (C,D) Volcano plots of DEGs generated by comparing groups with high or low stromal 
scores (C), and high or low immune scores (D). Green and red dots indicate the upregulated genes in patients with high and low scores, 
respectively. OS, overall survival in terms of days; GBM, glioblastoma; GBM-RT, GBM undergoing radiotherapy; DEG, differentially 
expressed gene.
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PPIs among genes with radioresistance signatures

A PPI network was created to investigate the roles of the 
identified DEGs in GBM radioresistance. The network 
included 132 nodes and 1,357 edges, and consisted of three 
significant modules, based on the results of the Molecular 
Complex Detection method. The representative nodes were 
TYROBP (Figure 3A), IL-6 (Figure 3B), and HLA-DRB1 
(Figure 3C), which were closely connected with other nodes 
in each module.

Identification of prognostic DEGs in patients with GBM-
RT 

Next, Cox regression analysis was conducted to investigate 
the roles of identified DEGs in the prognosis of patients 
with GBM-RT. A total of 88 DEGs (86 and 2 shared DEGs 
upregulated in the high- and low-expression stromal and 
immune groups, respectively) were shown to significantly 
correlate with the OS of patients with GBM-RT (Table S5;  
P<0.05). Furthermore, 29 DEGs were obtained by 

overlapping the top nodes in the PPI network, and 86 
significant DEGs were identified by Cox regression. Among 
the 29 overlapping genes, log-rank tests and Kaplan-
Meier plots indicated that 19 genes had prognostic value in 
patients with GBM-RT (Figure 4A,B,C,D and Figure S4) 
and were associated with a poor response to RT.

Validation of DEGs using the CGGA database

To determine whether the DEGs in TCGA database had 
prognostic significance in other cases of GBM, the 19 
genes were further investigated using data from the CGGA 
database. The gene-expression data of 325 patients with 
glioma, including 71 with GBM-RT, were downloaded 
and analyzed. We found that 10 of the 19 genes were 
significantly linked to a poor prognosis in patients with 
GBM-RT in the CGGA cohort, according to the log-
rank test. These genes included TLR2, C3AR1, CD163, 
ALOX5AP, NCF2, CYBB, FCGR1A, FCGR2A, FCGR2B, 
and RNASE6. The Kaplan-Meier plots of all 10 genes are 
shown in Figure 4E,F,G,H and Figure S5.

Figure 3 PPI network and hub genes. The top three PPI networks of DEGs are shown. A combined interaction score with a value of more 
than 0.4 was regarded as reflecting a significant difference. Log2 fold-changes are represented by the colors of the nodes, and interactions 
among proteins are represented by the sizes of nodes. PPI, protein-protein interaction; DEG, differentially expressed gene.
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Discussion

Radioresistance is considered the main cause of early 
recurrence and unsatisfactory clinical outcomes in 
patients with GBM. Thus, exploring the molecular basis 
of radioresistance is essential for improving the efficacy of 
RT in GBM management. The interplay between RT and 
the GBM microenvironment is reported to contribute to 
radioresistance development (14). Of the various stromal 
cells in the microenvironment, astrocytes interact most 
frequently with GBM cells to mediate the radioresponse (15).  
With respect to immune cells, macrophages and microglia 
in the microenvironment induce stemness and chemo-
radioresistance in GBM cells (16). Additionally, changes in 
the GBM microenvironment induced by RT can in turn 
contribute to radioresistance, leading to tumor relapse (17).

We identified the GBM microenvironment-related 
genes in TCGA database that appeared to contribute to 
GBM radioresistance, and verified the gene signature using 
the CGGA database. First, we determined the stromal 
and immune scores, and investigated their relationships 
with the prognoses of patients with GBM-RT. Notably, a 
previous report revealed no significant correlation between 
OS and the immune and stromal scores of patients with 
GBM (8). In contrast, our results indicated that higher 
stromal scores were significantly correlated with a shorter 
OS in patients with GBM-RT, suggesting that the stromal 
score is a negative prognostic indicator that can be used to 
predict the radioresponses of patients with GBM. Next, 
we established the global-expression profiles of genes in 
the GBM microenvironment, according to the stromal or 
immune scores. Functional enrichment analyses indicated 
that these genes participated in inflammation and immune 
activities, suggesting that immune features in the GBM 
microenvironment play vital roles in mediating GBM 
radioresistance. PPI-network analysis revealed that 19 
DEGs had prognostic value and were associated with 
radioresistance. To confirm the validity and reliability of 
these results, these genes were further validated using data 
from the CGGA cohort. Finally, 10 DEGs were found to be 
significantly related to the poor prognosis of patients with 
GBM-RT and to radioresistance. Three of these DEGs 
including CD163, TLR2, and C3AR1 have been reported to 
play potential roles in the resistance of tumor cells to RT.

CD163 is a marker of tumor-associated macrophages. 
Increasing evidence has revealed that accumulation of 
CD163-positive tumor-associated macrophages plays 

important roles in tumor invasion, progression, and poor 
clinical outcomes in patients with breast cancer (18) and 
nasopharyngeal carcinoma (19). In the case of breast cancer, 
patients with CD163-positive tumors had a shorter OS 
following postoperative RT, suggesting that CD163 is 
involved in radioresistance. This possibility was confirmed 
by conducting in vitro experiments (20). Additionally, 
CD163 was also reported to be overexpressed in glioma 
cells and to contribute to an unfavorable prognosis in 
patients with GBM (21). Notably, CD163 is a specific 
marker of M2 macrophages in patients with GBM (22), 
and is known to be involved in GBM radioresistance (23). 
TLR2 is a member of the TLR family, which comprises 
critical modulators of the innate immune responses to 
pathogen- and damage-associated molecules. TLR2 
overexpression is known to be related to increased risks of 
tumorigenesis and poor outcomes in patients with gastric 
cancer (24), prostate cancer (25), and colon cancer (26). In 
a murine model of orthotopic glioma, TLR2 activation of 
microglia promoted glioma immune-system evasion (27). 
Consistent with our results, Li et al. showed that TLR2 
was positively associated with the glioma grade and poor 
OS, and that TLR2 overexpression contributed to glioma 
progression (28). Notably, radioresistant effects of TLR2 
were also demonstrated. In vivo experiments showed that 
TLR2-knockout mice were more susceptible to irradiation-
induced death, whereas treatment with the TLR2-ligand 
Pam3CSK4 induced radioresistance (29). However, TLR2 
activation has also been reported to play a role in innate 
and adaptive immunity against brain tumors (30). Thus, 
the specific relationship between TLR2 and both GBM 
tumor progression and radioresistance requires further 
investigation. C3AR1 encodes the complement C3a receptor 
1 (C3aR1), a complement cascade receptor that functions 
as an immune regulator. Findings with experimental tumor 
models have indicated that signaling through C3aR1 can 
impact tumor growth by modifying immune infiltrates in 
the tumor microenvironment (31). C3AR1 upregulation 
was recently reported to correlate with chemoresistance 
and the survival of patients with soft tissue sarcoma (32). 
Using weighted gene co-expression network analysis, Pan 
et al. also identified several immune inflammatory response-
related genes (including C3AR1) in GBM, particularly in 
the mesenchymal subtype (33). It has been proposed that 
C3aR1 is upregulated in response to RT, which affects RT-
induced tumor-specific immunity (34).

One limitation of our study was that our research was 
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retrospective. Therefore, prospective studies are needed to 
confirm our results. In addition, the gene signatures were 
analyzed based on TCGA and CGGA data, and these findings 
should be verified in clinical, cellular, and animal experiments.

Conclusions

In conclusion, using the ESTIMATE algorithm, our 
bioinformatics analysis of patients with GBM-RT enabled 
the identification of GBM microenvironment-related genes 
associated with radioresistance. The stromal/immune score-
based gene signatures identified here represent promising 
biomarkers for GBM and provide a theoretical basis for 
predicting the radioresponses and clinical outcomes of 
patients with GBM. However, further investigation is 
necessary to examine potential associations between these 
genes and RT combined with immunotherapy.
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Supplementary

Figure S1 Analysis workflow of the current study.
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Figure S2 Differential analysis of gene-expression profiles related to stromal and immune scores in patients with GBM-RT. (A,B) Heatmap 
for DEGs generated by comparing groups with (A) high and low stromal score groups, and (B) groups with high and low immune score. 
DEGs were determined using the limma package of R software, with the criteria of P<0.05 and |log2 fold-change| >1. (C,D) Venn diagrams 
of intersecting DEGs in groups with high or low stromal/immune scores.

Figure S3 GO-based enrichment analysis of 139 DEGs in term of CCs.

A B

C D
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Table S1 Top 20 GO terms of biological process

Ontology ID Description GeneRatio pvalue p.adjust qvalue Count

BP GO:0002495 Antigen processing and presentation of peptide 
antigen via MHC class II

72/207 2.22E-98 4.52E-95 3.28E-95 72

BP GO:0002504 Antigen processing and presentation of peptide 
or polysaccharide antigen via MHC class II

72/207 3.59E-98 4.52E-95 3.28E-95 72

BP GO:0019886 Antigen processing and presentation of 
exogenous peptide antigen via MHC class II

71/207 4.92E-97 4.13E-94 3.00E-94 71

BP GO:0048002 Antigen processing and presentation of peptide 
antigen

76/207 5.37E-82 3.38E-79 2.45E-79 76

BP GO:0002478 Antigen processing and presentation of 
exogenous peptide antigen

75/207 7.73E-82 3.89E-79 2.82E-79 75

BP GO:0019884 Antigen processing and presentation of 
exogenous antigen

75/207 4.28E-81 1.79E-78 1.30E-78 75

BP GO:0019882 Antigen processing and presentation 77/207 1.42E-79 5.11E-77 3.71E-77 77

BP GO:0034341 Response to interferon-gamma 73/207 1.43E-78 4.50E-76 3.27E-76 73

BP GO:0071346 Cellular response to interferon-gamma 66/207 6.76E-70 1.89E-67 1.37E-67 66

BP GO:0060333 Interferon-gamma-mediated signaling pathway 54/207 6.00E-63 1.51E-60 1.10E-60 54

BP GO:0050852 T cell receptor signaling pathway 52/207 5.45E-50 1.25E-47 9.06E-48 52

BP GO:0050851 Antigen receptor-mediated signaling pathway 54/207 5.70E-49 1.20E-46 8.68E-47 54

BP GO:0002399 MHC class II protein complex assembly 23/207 3.42E-47 6.15E-45 4.46E-45 23

BP GO:0002503 Peptide antigen assembly with MHC class II 
protein complex

23/207 3.42E-47 6.15E-45 4.46E-45 23

BP GO:0002501 Peptide antigen assembly with MHC protein 
complex

23/207 1.01E-44 1.69E-42 1.23E-42 23

BP GO:0002396 MHC protein complex assembly 23/207 6.55E-41 1.03E-38 7.48E-39 23

BP GO:0042102 Positive regulation of T cell proliferation 36/207 8.13E-41 1.20E-38 8.74E-39 36

BP GO:0050671 Positive regulation of lymphocyte proliferation 37/207 2.18E-38 3.05E-36 2.21E-36 37

BP GO:0032946 Positive regulation of mononuclear cell 
proliferation

37/207 2.73E-38 3.62E-36 2.63E-36 37

BP GO:0070663 Regulation of leukocyte proliferation 43/207 1.44E-37 1.81E-35 1.31E-35 43
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Table S2 Top 20 GO terms of molecular function (MF)

Ontology ID Description GeneRatio pvalue p.adjust qvalue Count

MF GO:0042605 Peptide antigen binding 50/208 1.03E-68 3.02E-66 2.42E-66 50

MF GO:0032395 MHC class II receptor activity 36/208 2.20E-56 3.24E-54 2.59E-54 36

MF GO:0003823 Antigen binding 50/208 5.31E-56 5.22E-54 4.17E-54 50

MF GO:0042277 Peptide binding 56/208 2.26E-46 1.67E-44 1.33E-44 56

MF GO:0023026 MHC class II protein complex binding 30/208 3.09E-46 1.82E-44 1.46E-44 30

MF GO:0033218 Amide binding 57/208 3.34E-44 1.64E-42 1.31E-42 57

MF GO:0023023 MHC protein complex binding 30/208 2.36E-41 9.96E-40 7.96E-40 30

MF GO:0140375 Immune receptor activity 44/208 6.29E-40 2.32E-38 1.85E-38 44

MF GO:0030247 Polysaccharide binding 15/208 6.36E-21 2.08E-19 1.67E-19 15

MF GO:0030246 Carbohydrate binding 19/208 4.48E-10 1.32E-08 1.06E-08 19

MF GO:0061134 Peptidase regulator activity 17/208 1.21E-09 3.23E-08 2.58E-08 17

MF GO:0004866 Endopeptidase inhibitor activity 15/208 3.66E-09 9.00E-08 7.19E-08 15

MF GO:0030414 Peptidase inhibitor activity 15/208 5.86E-09 1.33E-07 1.06E-07 15

MF GO:0061135 Endopeptidase regulator activity 15/208 6.67E-09 1.41E-07 1.12E-07 15

MF GO:0070628 Proteasome binding 7/208 1.71E-08 3.37E-07 2.69E-07 7

MF GO:0004867 Serine-type endopeptidase inhibitor 
activity

10/208 1.07E-07 1.97E-06 1.57E-06 10

MF GO:0008009 Chemokine activity 8/208 3.22E-07 5.58E-06 4.46E-06 8

MF GO:0019864 IgG binding 4/208 2.43E-06 3.98E-05 3.18E-05 4

MF GO:0035325 Toll-like receptor binding 4/208 5.63E-06 8.74E-05 6.98E-05 4

MF GO:0042379 Chemokine receptor binding 8/208 5.95E-06 8.77E-05 7.01E-05 8
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Table S3 Top 20 GO terms of cellular components

Ontology ID Description GeneRatio pvalue p.adjust qvalue Count

CC GO:0042613 MHC class II protein complex 67/213 2.38E-116 3.69E-114 2.03E-114 67

CC GO:0042611 MHC protein complex 67/213 2.96E-99 2.30E-97 1.26E-97 67

CC GO:0030669 Clathrin-coated endocytic vesicle membrane 52/213 3.26E-79 1.68E-77 9.26E-78 52

CC GO:0045334 Clathrin-coated endocytic vesicle 52/213 1.76E-73 6.81E-72 3.74E-72 52

CC GO:0071556 Integral component of lumenal side of 
endoplasmic reticulum membrane

51/213 2.35E-70 6.07E-69 3.34E-69 51

CC GO:0098553 Lumenal side of endoplasmic reticulum 
membrane

51/213 2.35E-70 6.07E-69 3.34E-69 51

CC GO:0098576 Lumenal side of membrane 51/213 4.53E-69 1.00E-67 5.52E-68 51

CC GO:0005765 Lysosomal membrane 72/213 8.71E-66 1.69E-64 9.29E-65 72

CC GO:0098852 Lytic vacuole membrane 72/213 1.19E-65 2.06E-64 1.13E-64 72

CC GO:0030665 Clathrin-coated vesicle membrane 53/213 1.39E-65 2.16E-64 1.19E-64 53

CC GO:0030134 COPII-coated ER to Golgi transport vesicle 54/213 1.59E-65 2.24E-64 1.23E-64 54

CC GO:0012507 ER to Golgi transport vesicle membrane 51/213 2.82E-65 3.64E-64 2.00E-64 51

CC GO:0032588 Trans-Golgi network membrane 51/213 1.36E-64 1.62E-63 8.91E-64 51

CC GO:0030666 Endocytic vesicle membrane 58/213 1.99E-60 2.20E-59 1.21E-59 58

CC GO:0030660 Golgi-associated vesicle membrane 51/213 2.09E-57 2.16E-56 1.19E-56 51

CC GO:0030136 Clathrin-coated vesicle 53/213 5.25E-56 5.09E-55 2.80E-55 53

CC GO:0005798 Golgi-associated vesicle 54/213 3.85E-55 3.51E-54 1.93E-54 54

CC GO:0030662 Coated vesicle membrane 53/213 1.54E-53 1.32E-52 7.27E-53 53

CC GO:0030139 Endocytic vesicle 61/213 1.81E-53 1.47E-52 8.11E-53 61

CC GO:0030176 Integral component of endoplasmic reticulum 
membrane

51/213 6.62E-51 5.13E-50 2.82E-50 51



© Translational Cancer Research. All rights reserved.  http://dx.doi.org/10.21037/tcr-20-2476

Table S4 Enrichment of KEGG pathways

ID Description GeneRatio pvalue p.adjust qvalue Count

hsa05150 Staphylococcus aureus infection 20/88 7.12E-21 1.00E-18 6.30E-19 20

hsa05152 Tuberculosis 22/88 1.19E-17 8.37E-16 5.25E-16 22

hsa05140 Leishmaniasis 16/88 8.32E-17 3.54E-15 2.22E-15 16

hsa04145 Phagosome 20/88 1.00E-16 3.54E-15 2.22E-15 20

hsa04610 Complement and coagulation 
cascades

15/88 1.11E-14 3.12E-13 1.96E-13 15

hsa05323 Rheumatoid arthritis 15/88 4.49E-14 1.05E-12 6.61E-13 15

hsa05332 Graft-versus-host disease 10/88 1.63E-11 3.28E-10 2.06E-10 10

hsa05310 Asthma 9/88 2.48E-11 4.37E-10 2.74E-10 9

hsa04640 Hematopoietic cell lineage 13/88 3.79E-11 5.95E-10 3.73E-10 13

hsa05321 Inflammatory bowel disease (IBD) 11/88 7.94E-11 1.12E-09 7.02E-10 11

hsa05322 Systemic lupus erythematosus 14/88 1.79E-10 2.30E-09 1.44E-09 14

hsa05133 Pertussis 11/88 4.61E-10 5.42E-09 3.40E-09 11

hsa04612 Antigen processing and presentation 11/88 6.15E-10 6.27E-09 3.93E-09 11

hsa04940 Type I diabetes mellitus 9/88 6.23E-10 6.27E-09 3.93E-09 9

hsa04672 Intestinal immune network for IgA 
production

9/88 2.15E-09 2.02E-08 1.27E-08 9

hsa05145 Toxoplasmosis 12/88 2.51E-09 2.22E-08 1.39E-08 12

hsa05164 Influenza A 14/88 3.49E-09 2.89E-08 1.82E-08 14

hsa05330 Allograft rejection 8/88 5.62E-09 4.40E-08 2.76E-08 8

hsa04061 Viral protein interaction with cytokine 
and cytokine receptor

11/88 9.22E-09 6.84E-08 4.29E-08 11

hsa05416 Viral myocarditis 9/88 1.40E-08 9.90E-08 6.21E-08 9

hsa05320 Autoimmune thyroid disease 8/88 8.91E-08 5.98E-07 3.75E-07 8

hsa05134 Legionellosis 8/88 1.60E-07 1.03E-06 6.44E-07 8

hsa04659 Th17 cell differentiation 10/88 2.18E-07 1.34E-06 8.39E-07 10

hsa04668 TNF signaling pathway 10/88 3.36E-07 1.98E-06 1.24E-06 10

hsa04514 Cell adhesion molecules (CAMs) 11/88 5.43E-07 3.06E-06 1.92E-06 11

hsa04657 IL-17 signaling pathway 9/88 7.46E-07 4.05E-06 2.54E-06 9

hsa05169 Epstein-Barr virus infection 12/88 1.68E-06 8.78E-06 5.50E-06 12

hsa04658 Th1 and Th2 cell differentiation 8/88 6.61E-06 3.33E-05 2.09E-05 8

hsa04933 AGE-RAGE signaling pathway in 
diabetic complications

8/88 1.23E-05 5.99E-05 3.75E-05 8

hsa05142 Chagas disease (American 
trypanosomiasis)

8/88 1.43E-05 6.48E-05 4.06E-05 8

hsa05146 Amoebiasis 8/88 1.43E-05 6.48E-05 4.06E-05 8

hsa05144 Malaria 6/88 1.57E-05 6.84E-05 4.29E-05 6

hsa04064 NF-kappa B signaling pathway 8/88 1.64E-05 6.84E-05 4.29E-05 8

hsa04060 Cytokine-cytokine receptor interaction 13/88 1.65E-05 6.84E-05 4.29E-05 13

hsa05166 Human T-cell leukemia virus 1 
infection

11/88 2.43E-05 9.81E-05 6.15E-05 11

hsa04620 Toll-like receptor signaling pathway 7/88 0.000134 0.000524 0.000329 7

hsa05168 Herpes simplex virus 1 infection 15/88 0.000252 0.00096 0.000602 15

hsa05132 Salmonella infection 9/88 0.000398 0.001479 0.000927 9

hsa04380 Osteoclast differentiation 7/88 0.000482 0.001741 0.001092 7

hsa05020 Prion diseases 4/88 0.000543 0.001915 0.001201 4

hsa04621 NOD-like receptor signaling pathway 8/88 0.000787 0.002706 0.001697 8

hsa04062 Chemokine signaling pathway 8/88 0.001043 0.003501 0.002195 8

hsa04666 Fc gamma R-mediated phagocytosis 5/88 0.003433 0.011258 0.00706 5

hsa04210 Apoptosis 6/88 0.00367 0.011759 0.007374 6

hsa01523 Antifolate resistance 3/88 0.004575 0.014336 0.00899 3

hsa04623 Cytosolic DNA-sensing pathway 4/88 0.004898 0.015014 0.009415 4

hsa04625 C-type lectin receptor signaling 
pathway

5/88 0.005532 0.016595 0.010407 5

hsa05221 Acute myeloid leukemia 4/88 0.006098 0.017912 0.011233 4

hsa05143 African trypanosomiasis 3/88 0.007544 0.021709 0.013614 3

hsa04217 Necroptosis 6/88 0.007804 0.022008 0.013801 6

hsa04611 Platelet activation 5/88 0.011428 0.031596 0.019814 5

hsa05135 Yersinia infection 5/88 0.01381 0.037446 0.023482 5

hsa05167 Kaposi sarcoma-associated 
herpesvirus infection

6/88 0.017255 0.045636 0.028618 6

hsa05162 Measles 5/88 0.017477 0.045636 0.028618 5

hsa05130 Pathogenic Escherichia coli infection 6/88 0.018505 0.046593 0.029218 6

hsa05202 Transcriptional misregulation in cancer 6/88 0.018505 0.046593 0.029218 6
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Table S5 Correlation of the selected DEGs with the OS of patients with GBM-RT identified by Cox regression analysis in TCGA database

Terms HR[exp(coef)] coef 95% CI lower 95% CI upper Z P value

DLL3 0.881408 -0.12623 -0.19726 -0.05521 -3.48372 4.94E-04

BCAN 0.917235 -0.08639 -0.16807 -0.00471 -2.07305 0.038167

PLA2G2A 1.051875 0.050574 6.10E-04 0.100539 1.983877 0.04727

LTF 1.056815 0.055259 0.017223 0.093295 2.847469 0.004407

SLPI 1.060782 0.059006 0.005916 0.112097 2.178359 0.029379

CXCL10 1.064471 0.062478 0.002551 0.122406 2.04338 0.041015

COL6A3 1.065954 0.063871 0.011623 0.116118 2.395979 0.016576

FCGBP 1.068699 0.066442 0.005769 0.127116 2.146339 0.031846

PI3 1.073327 0.070763 0.005245 0.136282 2.116854 0.034272

LYZ 1.073906 0.071302 0.007092 0.135512 2.176429 0.029523

VSIG4 1.075443 0.072733 0.002282 0.143183 2.02346 0.043026

IL8 1.075938 0.073192 0.007456 0.138929 2.182266 0.02909

TREM1 1.07641 0.073631 0.002621 0.144642 2.032294 0.042124

CHI3L2 1.077258 0.074419 0.019478 0.129359 2.65483 0.007935

CXCL14 1.080297 0.077236 0.030698 0.123773 3.252858 0.001143

GPNMB 1.082401 0.079181 0.012482 0.145881 2.326751 0.019979

NNMT 1.08533 0.081884 0.030996 0.132773 3.153747 0.001612

POSTN 1.087824 0.084179 0.044279 0.124079 4.134989 3.55E-05

ALOX5AP 1.08895 0.085214 0.013445 0.156983 2.327134 0.019958

SERPINA1 1.090036 0.086211 0.013712 0.15871 2.330656 0.019772

CCL20 1.090169 0.086333 0.007298 0.165368 2.140943 0.032279

CHI3L1 1.091505 0.087558 0.040746 0.134369 3.665969 2.46E-04

F13A1 1.091961 0.087975 0.028615 0.147335 2.904795 0.003675

TNFSF10 1.092109 0.08811 0.002294 0.173927 2.012352 0.044183

RGS1 1.093359 0.089254 0.015567 0.162941 2.374022 0.017595

HLA-DMA 1.094432 0.090236 0.001664 0.178807 1.996796 0.045847

C1QA 1.095929 0.091603 0.01 0.173206 2.200141 0.027797

CP 1.099548 0.094899 0.026501 0.163298 2.719338 0.006541

SAMSN1 1.100264 0.09555 0.003059 0.188041 2.024793 0.042889

CD163 1.100454 0.095723 0.03367 0.157775 3.02344 0.002499

AIM1 1.106014 0.100762 0.02152 0.180005 2.492221 0.012695

RNASE1 1.107058 0.101706 0.018785 0.184627 2.403972 0.016218

SOD2 1.107097 0.101741 0.009082 0.194401 2.152062 0.031392

FCER1G 1.108624 0.10312 0.018343 0.187897 2.384032 0.017124

PTX3 1.109612 0.10401 0.04603 0.16199 3.515971 4.38E-04

BIRC3 1.110015 0.104373 0.012755 0.195991 2.232831 0.02556

CCL2 1.110579 0.104882 0.046226 0.163537 3.504605 4.57E-04

UBD 1.112426 0.106543 0.031787 0.1813 2.793343 0.005217

BCL2A1 1.113078 0.10713 0.02548 0.188779 2.571606 0.010123

CLEC2B 1.115707 0.109488 0.02679 0.192186 2.594891 0.009462

S100A4 1.116046 0.109792 0.036712 0.182873 2.944552 0.003234

LY96 1.116715 0.110391 0.026205 0.194577 2.570053 0.010168

C3AR1 1.118796 0.112254 0.008528 0.215979 2.121106 0.033913

FCGR1A 1.119057 0.112487 0.008706 0.216267 2.124384 0.033638

DPYD 1.121302 0.114491 0.036672 0.19231 2.883576 0.003932

S100A8 1.121341 0.114526 0.043056 0.185995 3.14072 0.001685

CTSS 1.121415 0.114592 0.017865 0.211318 2.321973 0.020234

CCR1 1.122064 0.11517 8.94E-04 0.229446 1.975298 0.048234

CD14 1.125668 0.118376 0.036756 0.199997 2.842593 0.004475

LAPTM5 1.128666 0.121036 0.022499 0.219574 2.407486 0.016063

ITGB2 1.130141 0.122342 0.025103 0.219581 2.465937 0.013666

FLJ22662 1.130952 0.12306 0.026339 0.219781 2.493702 0.012642

PYCARD 1.131215 0.123292 0.016127 0.230457 2.254916 0.024139

IL10RA 1.131224 0.1233 0.023577 0.223023 2.423355 0.015378

IL1B 1.131917 0.123913 0.027372 0.220454 2.515673 0.011881

SERPINE1 1.132382 0.124323 0.046999 0.201648 3.15127 0.001626

TGFBI 1.132835 0.124723 0.044614 0.204832 3.051493 0.002277

CXorf9 1.133711 0.125496 0.016541 0.234452 2.257518 0.023976

PTPRC 1.135169 0.126782 0.028047 0.225517 2.516718 0.011845

C1orf38 1.135762 0.127304 0.013093 0.241514 2.184654 0.028914

RNASE6 1.13619 0.127681 0.027556 0.227806 2.49937 0.012441

CFI 1.13753 0.128859 0.049446 0.208272 3.180315 0.001471

S100A9 1.139868 0.130912 0.054232 0.207592 3.346154 8.19E-04

SERPINF1 1.140222 0.131223 0.045693 0.216753 3.007054 0.002638

SQRDL 1.141299 0.132167 0.032157 0.232177 2.590175 0.009593

CLEC7A 1.143047 0.133698 0.017518 0.249878 2.255491 0.024103

TLR2 1.145966 0.136248 0.031434 0.241062 2.547769 0.010841

SLA 1.147324 0.137432 0.037735 0.237129 2.70181 0.006896

PSCDBP 1.147956 0.137983 0.033347 0.242618 2.584608 0.009749

FGL2 1.149974 0.139739 0.021932 0.257547 2.324849 0.02008

GPR65 1.151432 0.141006 0.032105 0.249908 2.537767 0.011156

CSTA 1.153006 0.142373 0.066494 0.218251 3.677507 2.36E-04

IFI30 1.153156 0.142503 0.046641 0.238365 2.913577 0.003573

C1S 1.15346 0.142766 0.067038 0.218494 3.695023 2.20E-04

CECR1 1.155062 0.144154 0.051433 0.236875 3.04717 0.00231

C5AR1 1.158813 0.147396 0.046884 0.247909 2.874177 0.004051

NCF2 1.159058 0.147608 0.043079 0.252136 2.767728 0.005645

FCGR2B 1.159292 0.147809 0.074332 0.221286 3.942732 8.06E-05

FCGR2A 1.159377 0.147883 0.048799 0.246967 2.925244 0.003442

SERPING1 1.159456 0.147951 0.072158 0.223745 3.82592 1.30E-04

TMEM176B 1.159545 0.148028 0.067693 0.228362 3.611518 3.04E-04

TNFAIP3 1.161278 0.149521 0.029151 0.269891 2.434619 0.014907

CSF2RB 1.161308 0.149547 0.024369 0.274724 2.341523 0.019205

STAB1 1.161958 0.150106 0.046476 0.253737 2.838965 0.004526

RNASE2 1.162077 0.150209 0.057075 0.243344 3.16107 0.001572

CYBB 1.171486 0.158273 0.038136 0.278411 2.582118 0.00982

SERPINB1 1.180691 0.1661 0.069733 0.262467 3.378224 7.30E-04

PLAUR 1.220504 0.199264 0.084103 0.314426 3.391329 6.96E-04

OS, overall survival in terms of days.
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Figure S4 Correlation of the selected DEGs with the OS of patients in TCGA database. Survival analysis was conducted by generating Kaplan-Meier curves. DEGs were grouped based on high (red line, n=174) or low (blue 
line, n=174) expression levels relative to the median gene-expression level. P<0.05, as determined by the log-rank test. OS, overall survival in terms of days.

Figure S5 Validation of the selected DEGs in the CGGA cohort. Survival analysis was conducted by generating Kaplan-Meier curves. DEGs were grouped based on high (red line, n=36) or low (blue line, n=35) 
expression levels relative to the median gene expression level. P<0.05, as determined by the log-rank test.


