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Introduction

Hepatocellular carcinoma (HCC) is one of the most common 
cancers in the world and has high morbidity and mortality. 
Indeed, HCC is a common malignant disease, and its 
incidence increases year by year (1,2). Developing countries 
have a high incidence of liver diseases. Factors contributing 
to liver cancer include the infections induced by hepatitis B 
and hepatitis C virus infections, the problems caused by bad 

habits, fatty liver disease induced by various dietary exposures 
and alcohol-related cirrhosis (3-5). In clinical terms, surgery, 
radiotherapy, and chemotherapy are used to treat liver 
cancer patients; however, their effects are limited in most 
cases (6). Research has indicated that surgical resection is 
only suitable for a few early-stage patients with liver cancer, 
and right hepatectomy has a higher risk of post-operative 
complications than left hepatectomy (7). Drug chemotherapy, 
such as sorafenib which is the most common option for late-
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stage patients, could delay the deterioration of liver cancer 
in some advanced patients, but the resistance of the tumor 
cells on drugs causes poor prognosis of the patients (8). As a 
result, conventional therapy methods have limited effects in 
improving the outcomes of this dangerous disease. Further 
research needs to be conducted to find better methods for 
treating liver cancer.

Propofol (2,6-diisopropylphenol) is currently one of 
the most commonly used anesthetics in clinical practice. 
It was first introduced into clinical treatment in 1986, and 
served as an anesthetic for surgery (9). Notably, in recent 
years, propofol has not only served as a sedative or hypnotic 
drug during surgery, but has also been shown to have many 
non-anesthetic effects, such as anti-tumor or carcinogenic 
activities (10,11). Many reports have indicated that the 
anti-tumor effects of propofol are closely related to micro 
ribonucleic acids (miRNAs). For example, propofol could 
downregulate miR-372 to suppress the activity of Wnt/
β-catenin pathway and mechanistic target of rapamycin 
(mTOR) signal pathways, and finally inhibit non-small 
cell lung cancer cell invasion and migration (12). In breast 
cancer, propofol could downregulate miR-21 and miR-24 
to inactivate phosphatidylinositol-3-Kinase and Protein 
Kinase Ba, Wnt/β-catenin and p27, and finally inhibit cell 
proliferation and epithelial-mesenchymal transition (13,14).

In this study, we examined the effects of propofol 
in inducing HCC cell apoptosis, and illuminated the 
mechanism by which propofol induces HCC apoptosis 
progress to provide some reference for HCC research and 
treatment. We present the following article in accordance 
with the MDAR reporting checklist (available at https://
dx.doi.org/10.21037/tcr-21-830).

Methods

Cell culture

HCC cell lines, including HepG2 and Huh-7, were used in 
this study (all of which were purchased from BeNa Culture 
Collection, Beijing, China). All cells were cultured with 
Dulbecco’s Modified Eagle Medium (HyClone Logan, State 
of Utah, USA) and 10% fetal bovine serum (FBS) purchased 
from PAN Biotech (Shanghai, China) in an incubator (37 ℃ 
and 5% carbon dixoide).

Cell transfection

When the density of cells reached 70% in each well, 

the miR-134 inhibitor was transfected into wells with 
lipofectamine 3000 (Invitrogen, California, USA), and the 
cells were then incubated for 48 h.

Western blot

The tota l  prote in  o f  ce l l s  was  ex t rac ted  wi th  a 
radioimmunoprecipitation assay buffer. The extracts were 
added with 1% phenylmethylsulfonyl fluoride (Beyotime, 
Shanghai, China), and then were used for western blot 
assay. A Pierce bicinchoninic acid (BCA) protein assay 
kit (Beyotime, Shanghai, China) was used to measure 
protein concentration. Target proteins in the samples were 
separated by 10% sodium dodecyl sulphate-polyacrylamide 
gel electrophoresis (SDS-PAGE), and then transferred from 
SDS-PAGE onto polyvinylidene fluoride or polyvinylidene 
difluoride membranes. In addition, β-actin was used for 
the endogenous controls. After blocking with 5% non-
fat milk for 1 h, the membranes were incubated with the 
primary antibodies at 4 °C overnight. After being washed 
3 times with tris-buffered saline, the membranes were 
incubated with secondary antibodies for 1.5 h at 25 ℃. 
Finally, the chemiluminescence detection system was used 
to observed protein samples. The antibodies were used as 
follow: anti-BCL-2 (1:1000, ab10978135, ThermoFisher, 
Massachusetts, USA); anti-cleaved Caspase-3 (1:1000, 
ab10979528, ThermoFisher, Massachusetts, USA); anti-β-
actin (1:1000, sc-47,778, Santa Cruz).

qRT-PCR

The total RNA of cells was extracted with a Trizol reagent, 
and then used for the reverse transcription with the Revert 
Aid First Strand cDNA Synthesis Kit (Thermo Fisher, 
Massachusetts, USA). Primers of miR-134 were synthesized 
and purified by RiboBio (Guangzhou, China). U6 small 
nuclear RNA (U6) was used as the endogenous control. 
The information of primers was list in Table 1.

Flow cytometry assay

The treated human brain microvascular endothelial 
cells (HBMECs) were treated with trypsinase (0.25%, 
ethylenediaminetetraacetic acid-free) and harvested. After 
being washed 3 times with ice phosphate-buffered saline, 
a total of 1×105 cells were diluted in ice Annexin V-FITC 
binding buffer. Subsequently, the HBMECs were incubated 
with Annexin V-FITC and propidium iodide in darkness 
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for 15 min at room temperature. Next, a flow cytometer 
(BD Biosciences, State of New Jersey, USA) was used to 
determine the cell apoptosis ratio.

CCK-8

The HBMECs were seeded into 96-well plates. After 
transfection, the cells in each well were incubated for 48 h 
and the Cell Counting Kit-8 (CCK-8) solution (Amyjet, 
Wuhan, China) was then added. In addition, a blank well 
was added to the CCK-8 solution as a control to standardize 
the value of all the wells. After incubating for 4 h, the 
absorbance value was measured using a microplate reader 
(Flash, Shanghai, China) at 450 nm.

Statistical analysis

The data are listed as mean ± standard deviation (SD). 

SPSS 13.0 and Graphpad Prism 8.0 were used to analyze 
and display the results. The differences between the groups 
were calculated using a Chi-squared test or analysis of 
variance with Tukey’s post hoc-test. All of the experiments 
were performed at least 3 independent times. A P value 
<0.05 was considered statistically significant.

Results

Propofol promotes HepG2 cell apoptosis

To analyze the lethal  effect of propofol on HCC 
cells, HepG2 and Huh-7 were treated with 5 gradient 
concentrations of propofol (i.e., 0, 15 30, 60, and  
120 μM), and a CCK-8 assay was used to observe the 
viability ratio of the cells. As Figure 1 shows, the apoptosis 
rates of HepG2 and Huh-7 cells were dose-dependent; as 
propofol concentrations increased, the apoptosis ratio of 
the cells also increased. According to the results, 30 μM was 
the half-maximal inhibitory concentration of propofol in 
HepG2 cells, and 60 μM was the half-maximal inhibitory 
concentration of propofol in Huh-7 cells.

Propofol promotes the expression of cleaved casepase-3 and 
B cell lymphoma-2 (BCL-2) in HepG2 cells

To further explore the mechanism by which propofol has a 
lethal effect on HCC cells, the HepG2 cell line was selected 
as the experimental subject, and 30 μM of propofol was used 
to treat the HepG2 cells. Additionally, a western blot assay 

Table 1 Primer sequence of miR-134, BCL-2 and U6

Name of primer Sequences

miR-134-F 5'-CTGTGGGCCACCTAGTCACCAA-3'

miR-134-R 5'-GCTGTCAACGATACGCTACCTA-3'

BCL-2-F  5’-ACTGGCTCTGTCTGAGTAAG-3’

BCL-2-R 5’-CCTGATGCTCTGGGTAAC-3’

U6-F 5’-CTCGCTTCGGCAGCACA-3’

U6-R 5’-AACGCTTCACGAATTTGCGT-3’

Figure 1 The viability of HepG2 and Huh7 is significantly related to the concentration of propofol. The cell viability ratio was detected 
using a CCK-8 assay. (A) HepG2; and (B) Huh-7. **, P<0.01.
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was used to detect the expression level of caspase-3 and 
BCL-2. The results showed that compared to the control 
group, the expression level of BCL-2 was decreased, but 
the expression level of cleaved caspase-3 was significantly 
increased. Thus, propofol appeared to effectively promote 
HepG2 apoptosis (see Figure 2; P<0.05).

Propofol promotes miR-134 expression in HepG2 cells

To analyze the relationship between propofol and miR-
134, different concentrations of propofol were used to treat 
the HCC cells, and a quantitative reverse-transcriptase 
polymerase chain reaction (qRT-PCR) was used to detect 
the expression level of miR-134. As Figure 3A shows, after 
propofol treatment, compared to the control group, the 
miR-134 expression levels of the HepG2 cells in both the 
30 and 60 μM treatment groups were significantly increased 
(P<0.05). The expression pattern of miR-134 in the Huh-
7 cells showed similar results (see Figure 2B; P<0.05). Thus, 
the results indicate that propofol stimulated the expression 
of miR-134.

MiR-134 directly targets BCL-2

The database of miRNAs target was used to predict the 
downstream targets of miR-134, and the results showed 
BCL-2 was a potential target of miR-134. The qRT-PCR 

showed that miR-134 was significantly upregulated in the 
cells treated with propofol (see Figure 3A; P<0.05). To 
further confirm their connection activity, a dual-luciferase 
assay was used to detect the combination abilities of miR-
134 to wild and mutation types of BCL-2. The results 
showed that miR-134 significantly decreased the luciferase 
activity of BCL-2-wt (see Figure 3B; P<0.05), but had no 
effect on BCL-2-mut (see Figure 3B; P>0.05). These results 
suggested that miR-134 directly targets BCL-2.

Downregulated miR-134 reversed the effect of propofol in 
inducing HepG2 cell apoptosis

To confirm the role of miR-134 in the process of propofol-
inducing HCC cell apoptosis, a miR-134 inhibitor was 
transfected into HepG2 cells, which were treated with 30 
μM propofol at the same time. In the experiments, CCK-
8 was used to observe the cell viability ratio, and a western 
blot assay was used to detect the expression level of BCL-2 
and cleaved caspase-3. The results of the CCK-8 and flow 
cytometry assay showed that the apoptosis level increased 
significantly in the group that was treated with propofol 
only (see Figure 4A,B,C; all P<0.05). Conversely, the group 
that was treated with propofol and transfected with a miR-
134 inhibitor showed only a subtle difference compared 
to the control group (see Figure 4A,B,C; all P<0.05). The 
western blot assay showed that the expression level of BCL-

Figure 2 Propofol promotes the expression of cleaved casepase-3 and BCL-2 (B cell lymphoma-2) in HepG2 cells. A western blot assay was 
used to examine the effects of propofol on the expression of caspase-3 and BCL-2. (A) The expression level of BCL-2 and cleaved caspase-3. 
(B) The relative expression level of BCL-2. (C) The relative expression level of caspase-3. **, P<0.01.
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2 decreased and the expression level of cleaved caspase-3 
increased in the group that was treated with propofol only 
(see Figure 5; P<0.05). Conversely, the expression level 
had no obvious change in the group that was treated with 
propofol and transfected with miR-134; however, the 
inhibitor group showed a subtle difference compared to the 
control group (see Figure 5; P<0.05). The results suggest 

that a miR-134 deficiency reversed the effect of propofol 
on BCL-2 and cleaved caspase-3 to induce HepG2 cell 
apoptosis.

Discussion

The mechanism of HCC formation and development 

Figure 4 Downregulated miR-134 reversed the effect of propofol in inducing HepG2 cell apoptosis. The CCK-8 and flow cytometry assay 
were used to observe the viability and apoptosis of cells. (A) Cell viability. (B-C) Flow cytometry assay. **, P<0.01.

Figure 3 Propofol promotes miR-134 expression in HepG2 cells, and miR-134 directly targets 3’-UTR of BCL-2. A QRT-PCR was used 
to detect the expression level of miR-134, and a dual-luciferase assay was used to observe the binding effect of miR-134 and BCL-2 (B cell 
lymphoma-2). (A) The relative expression level of miR-134. (B) Binding sites of miR-134 and BCL-2 (B cell lymphoma-2). (C)The relative 
luciferase activities of BCL-2-wt and BCL-2-mut. **, P<0.01.
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is complex. It is related to the regulation of multiple 
pathways. As the current clinical routine treatment has 
some limitations, a new and effective treatment is urgently 
necessary. Anesthesia is widely used in surgery to effectively 
reduce the pain of patients. In recent research, some current 
clinical anesthetics have been found to have anti-cancer 
effects (13,15). Propofol is a safe and an effective alternative 
for sedation. Propofol has been reported to have some 
advantages, including a rapid onset and a short duration 
of action. Thus, the use of intravenous anesthesia with 
propofol is growing in popularity. However, propofol plays 
an effective role in tumor inhibition, which could hinder 

liver cancer cell invasion, migration, and proliferation, 
and induce cell apoptosis. For example, Du et al. found 
that propofol targets Transcription factor SOX-4 (SOX4) 
to significantly decrease endometrial cancer cell colony 
numbers, inhibit their viability, migration, and invasion, 
and promote cancer cell apoptosis in a dose-dependent  
manner (16). To explore the lethal effect of propofol on 
liver cancer cells, we treated HCC cells with different 
concentrations of propofol, and found that propofol 
promoted HCC cell apoptosis in a dose-dependent manner.

Several studies have shown that propofol might regulate 
the biological behaviors of cancer cells by upregulating 

Figure 5 Downregulated miR-134 reversed the effect of propofol on downregulating BCL-2 (B cell lymphoma-2) and upregulating cleaved 
caspase-3. A western blot assay was used to examine the effect of miR-134 deficiency on the expression of caspase-3 and BCL-2. (A) The 
expression level of BCL-2 and cleaved caspase-3. (B) The expression level of miR-134. (C) The relative expression level of BCL-2. (D) The 
relative expression level of caspase-3. **, P<0.01.
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or downregulating the expression of some miRNAs. Li 
et al. (17) found that propofol inhibited colorectal cancer 
cell invasion and migration, and induced cell apoptosis by 
regulating the miR-124-3p/AKT pathway. Yu et al. (18)  
suggested that propofol could effectively inhibit pancreatic 
cancer proliferation and metastatic abilities by upregulating 
miRNA-328 and downregulat ing dis integrin and 
metalloproteinase domain-containing protein 8 (ADAM8) 
expression. Sun et al. (12) found that propofol could inhibit 
the proliferation and invasion of A549 cells by regulating 
miR-372 expression. Additionally, propofol could be 
combined with other drugs to enhance their treatment 
effects on cancer cells. For example, Zhang et al. found 
that propofol could inhibit gastric cancer cell autophagy 
to weaken the resistance of cancer cells to cisplatin by 
regulating the lncRNA MALAT1/miR-30e/ATG5 axis (19).

MiRNAs are small endogenous non-coding RNAs, 
which have been proven to be related to the proliferation, 
invasion, and migration of many cancers (20-22). MiRNAs 
are involved in many life activities of cells, and research has 
indicated that there is an immediate connection between 
miRNAs abnormal expression and cancer cell invasion 
and proliferation. Additionally, the functions of different 
miRNAs are diverse. Studies have found that overexpressed 
miR-26a-5p could inhibit gastric cancer cell proliferation 
and invasion abilities by targeting Wnt5a, while miR-20a 
could inhibit colorectal cancer cell autophagy by targeting 
ATG5/FIP200 (23,24). In the present study, we found that 
propofol promoted miR-134 expression in HCC cells, and 
the miR-134 expression level is related to the proliferation 
abilities of HCC cells, which further suggests that 
propofol affects cancer cells’ life activities by regulating the 
expression of miRNAs to some degree. To further analyze 
the regulation relationship between propofol and miR-
134, we conducted reserve experiments to confirm whether 
miR-134 was necessary for propofol to induce HCC cell 
apoptosis procession. We found that the suppression of 
miR-134 by transfection with a miR-134 inhibitor reversed 
the effects of propofol on liver cancer cell apoptosis. These 
results indicate that the anti-tumor function of propofol 
might be partly related to miR-134 upregulation.

Multiple studies have indicated that miR-134 acts as 
a tumor inhibitor in many cancers. The downregulation 
of miR-134 might induce cancer cell proliferation and 
invasion by targeting the mRNAs of several proteins. For 
example, one study indicated that miR-134 targeted 3’-
UTRs of matrix metalloproteinase 1 (MMP1) and matrix 
metalloproteinase 3 (MMP3), and further inhibited 

osteosarcoma cell invasion and metastasis (25). Additionally, 
miR-134 was found to have a connection to liver cancer. 
He et al. (26) found that miR-134 targets FOXM1 to 
inhibit HCC cell proliferation. In this study, we observed 
that propofol promoted caspase-3 activity, while miR-
134 deficiency induced by transfecting miR-134 inhibitor 
reserved this situation. Caspase-3 is a key protein in cell 
apoptosis, which plays an important role in the processes of 
tissue development and differentiation (27,28). In addition, 
we found that miR-134 directly targets BCL-2 and reduces 
its expression level in HCC cells. BCL-2 is an apoptosis-
related protein that inhibits cytochrome C release by its 
downstream factor, BCL-2 associated X (Bax), to further 
reduce the activity of caspase-3, and finally inhibit cell 
apoptosis (29). Based on these findings, propofol appears to 
upregulate miR-134 expression, inhibit BCL-2 expression 
level, and finally promote HCC cell apoptosis.

We explained the mechanism by which propofol has a lethal 
effect on HCC cells; however, the deep relationship between 
propofol and miR-134 remains unknown, and we are still not 
sure how propofol upregulates miR-134 expression levels in 
cancer cells. Thus, further research is needed. Additionally, for 
a more credible conclusion, it is necessary that more evidence 
about the propofol and miR-134 connection be gathered by in 
vivo animal model experiments.

Conclusions

In summary, propofol appears to upregulate the miR-
134 expression level, inhibit BCL-2 expression, promote 
caspase-3 activation, and induce HCC cell apoptosis.
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