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Background: Brain metastasis (BM) represents one of the most common advanced disease states in breast 
cancer (BC), especially in human epidermal growth factor receptor 2 (HER2)-positive BC, and is associated 
with poor survival outcomes.
Methods: In this study, in-depth analysis of the microarray data from the GSE43837 dataset with 19 
BM samples of HER2-positive BC patients and 19 HER2-positive nonmetastatic primary BC samples was 
conducted. The differentially expressed genes (DEGs) between BM and primary BC samples were identified 
and function enrichment analysis of the DEGs was conducted to identify potential biological functions. The 
hub genes were identified by constructing the protein-protein interaction (PPI) network using STRING and 
Cytoscape. UALCAN and Kaplan-Meier plotter online tools were used to verify the clinical roles of the hub 
DEGs in HER2-positive BC with BM (BCBM).
Results: A total of 1,056 DEGs including 767 downregulated and 289 upregulated genes were identified by 
comparing the microarray data of the HER2-positive BM and primary BC samples. Functional enrichment 
analysis demonstrated that the DEGs were mainly enriched in pathways related to extracellular matrix (ECM) 
organization, cell adhesion, and collagen fibril organization. PPI network analysis identified 14 hub genes. 
Among these, CD44, COL1A2, MMP14, POSTN, and SOX9 were associated with the survival outcomes of 
HER2-positive patients.
Conclusions: In summary, 5 BM-specific hub genes were identified in the study; those are potential 
prognostic biomarkers and therapeutic targets for HER2-positive BCBM patients. However, further 
investigations are necessary to unravel the mechanisms by which these 5 hub genes regulate BM in HER2-
positive BC.
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Introduction

According to the International Agency for Research 
on Cancer, breast cancer (BC) is the most diagnosed 
malignancy worldwide (1). Brain metastasis (BM) is 
commonly observed in advanced BC patients with around 
30% to 50% of metastatic BC (MBC) patients developing 
BM (2,3). The risk of BM as the first site of metastasis is low 
in stage I–II BC patients (4,5), but significantly increases 
in BC patients with stage III disease (6,7). In BC, 50% of 
human epidermal growth factor receptor 2 (HER2)-positive 
BC patients, 25% to 46% of triple-negative BC (TNBC) 
patients, and 10–15% of estrogen receptor (ER)-positive 
HER2-negative BC patients develop BM during their 
lifetime (8-11).

Although BC with BM (BCBM) patients can benefit from 
local treatments such as stereotactic radiosurgery (SRS), 
surgery, and to a lesser extent whole-brain radiation therapy 
(WBRT), the median survival time of patients with BM is 
only 3 to 27 months (12-14). Advancements in systemic 
management developed since the last two decades, which 
have improved outcomes of MBC patients, and the current 
median survival time of HER2-positive MBC patients is 
5 years (15,16). The poor efficacy of anti-cancer drugs 
against metastases in the central nervous system (CNS) is 
mainly attributed to the blood–brain barrier, which prevents 
significant concentration of high molecular-weight drugs 
entering the brain tissues (17). Progressive CNS disease 
accounts for the mortality of 50% of HER2-positive BCBM 
patients (18). Whole exome sequencing of 86 matched BMs, 

primary tumors, and normal tissues showed that clinically 
relevant genomic characteristics were significantly different 
in 53% of paired brain metastatic samples and primary 
BC sample (19). Therefore, understanding the precise 
molecular mechanisms underlying BMs in HER2-positive 
BC patients is critical in developing effective BM-specific 
treatment strategies.

In this study, the microarray data of the HER2-positive 
primary BC tissues and HER2-positive BM tissues of 
BC patients from the Gene Expression Omnibus (GEO) 
database were analyzed to identify candidate BM-related 
biomarker genes that are associated with the survival 
outcomes of HER2-positive BCBM patients. We present 
this article in accordance with the STREGA reporting 
checklist (available at https://tcr.amegroups.com/article/
view/10.21037/tcr-22-2715/rc).

Methods

Microarray data

The GEO database (https://www.ncbi.nlm.nih.gov/geo) is a 
public functional genomics data repository of the National 
Center for Biotechnology Information (NCBI) (20). The 
gene expression data of 19 BM tissues of HER2-positive BC 
patients and 19 HER2-positive non-metastatic primary BC 
samples were downloaded from the GSE43837 dataset (21).  
The probes in the Affymetrix Human X3P Array were 
converted into the corresponding gene symbol based on the 
annotation information in the platform.

Identification of differentially expressed genes (DEGs)

The GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r) 
web tool was used to identify the DEGs between BM 
tissues of HER2-positive BC and nonmetastatic primary 
HER2-positive BC samples. Benjamini & Hochberg (false 
discovery rate) was used to compare differences of genes 
expression in two groups. |log(fold change) (logFC)| >1 
and P value <0.01 were considered as threshold parameters.

Gene ontology (GO) term and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis of 
DEGs

DAVID (https://david.ncifcrf.gov/) (version 6.8) is a 
database for the functional annotation of large lists of 
genes (22,23). GO analysis is used to identify the molecular 
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functions (MFs), biological processes (BPs), and cellular 
components (CCs) associated with the DEGs (24). KEGG 
database is used for systematic analysis of high-level gene 
functions and pathways (25). DAVID (version 6.8) from 
the Bioinformatics website (https://www.bioinformatics.
com.cn/) was applied for visualizing the results of the GO 
and KEGG pathway enrichment analysis. P<0.05 was 
considered statistically significant.

Protein-protein interaction (PPI) network construction 
and analysis

STRING (https://string-db.org/) database is used to 
construct PPI networks (26). In the present study, STRING 
(version 11.5) database was used to construct a PPI network 
of DEGs; combined score >0.4 was considered statistically 
significant. Cytoscape (version 3.7.1) database is used 
for visualizing the molecular interaction networks (27). 
MCODE is an application in Cytoscape for identifying 
densely connected regions in a PPI network based on 
topology (28). MCODE uses vertex weighting, which is 
based on the clustering coefficient (Ci). It calculates the 
neighbor cliquishness Ci = 2n/ki(ki − 1) of a vertex, where n 
is the number of edges in the neighbor and ki is the vertex 
size of the neighbor of the vertex. MCODE selection were 
as follows: MCODE scores >5, degree cut-off =2, node 
score cut-off =0.2, maximum depth =100, and k-score =2.

Clinical significance analysis

UALCAN database (https://ualcan.path.uab.edu/) was used 
to perform in-depth analysis of the candidate DEGs by 
comparing the gene expression levels between 114 normal 
breast tissues and 1,097 primary BC tissues from breast 
invasive carcinoma dataset of The Cancer Genome Atlas 
(TCGA) database (29,30). Furthermore, the gene expression 
levels between 556 luminal subtype, 37 HER2-positive, 116 
TNBC and 114 normal breast tissues from breast invasive 
carcinoma dataset of TCGA database were compared. The 
expression levels of candidate genes between 83 HER2-
negative and 9 HER2-positive MBC tissues from MBC 
dataset of TCGA database were also analyzed.

Kaplan-Meier plotter tool (https://kmplot.com/analysis/) 
was used to assess the survival outcomes of 1,273 HER2-
positive BC patients based on the expression levels of the 
candidate genes. In this study, the association between 
expression of candidate genes and outcomes of HER2-
positive BC patients with or without BM was assessed.

Statistical analysis

Wilcoxon rank sum test was used to compare gene 
expression differences between groups. Kaplan-Meier 
survival analysis was used to compare survival differences in 
two groups. P<0.05 was considered statistically significant.

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Results

Identification of 1,056 DEGs in BM samples of HER2-
positive BC

A total of 1,056 DEGs including 767 downregulated and 
289 upregulated genes were identified by analyzing the 
transcriptome data of 19 BM samples of HER2-positive 
BC and 19 nonmetastatic primary BC samples from the 
GSE43837 dataset. The heatmap of these DEGs is shown 
in Figure 1A. Principal component analysis (PCA) is used 
for efficient dimensionality reduction and exploratory 
visualization of the data from the GSE43837 dataset. The 
BCBM group and primary BC group displayed different 
gene patterns (Figure 1B).

Functional enrichment analyses of DEGs

Functional enrichment analysis was performed using 
DAVID to identify biological mechanisms associated with 
the DEGs. GO analysis results showed that the DEGs were 
enriched in CC such as cell surface, membrane, extracellular 
matrix (ECM), focal adhesion, nucleus, and external side of 
plasma membrane (Figure 2A). Furthermore, DEGs were 
enriched in BP such as ECM organization, cell adhesion, 
collagen fibril organization, antigen processing and 
presentation of peptide antigen via major histocompatibility 
complex (MHC) class I, negative regulation of transforming 
growth factor beta receptor signaling pathway, and skeletal 
system development (Figure 2B). DEGs were also enriched 
in MF such as protein binding, metal ion binding, and 
small ribosomal subunit ribosomal RNA (rRNA) binding  
(Figure 2C). KEGG pathway analysis showed that the DEGs 
were enriched in pathways associated with autoimmune 
thyroid disease, dilated cardiomyopathy, graft-versus-host 
disease (Figure 2D).

After removing above one outlier in BCBM group 
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and three outliers in primary BC group discovered by 
PCA analysis, GO analysis and KEGG pathway analysis 
were performed again. GO analysis results showed 
that the DEGs were enriched in CC such as ECM, 
membrane, cytosol, cell surface, and extracellular exosome  
(Figure S1A). Furthermore, DEGs were enriched in BP 
such as ECM organization, skeletal system development, 
positive regulation of protein catabolic process, embryonic 
limb morphogenesis, and osteoclast differentiation  
(Figure S1B). DEGs were also enriched in MF such as 
protein binding, platelet-derived growth factor binding, 
protein kinase A binding, protease binding, and integrin 
binding (Figure S1C). KEGG pathway analysis showed that 
the DEGs were enriched in pathway of neurodegeneration-
multiple diseases, amoebiasis, rheumatoid arthritis, dilated 
cardiomyopathy, and advanced glycation end product 
(AGE)-receptor for AGE (RAGE) signaling pathway in 
diabetic complications (Figure S1D).

PPI network and module construction to identify hub genes

PPI network analysis of the DEGs was performed using the 
STRING 11.5 database (Figure 3A). Fourteen DEGS in the 
most significant module as visualized using the MCODE 
plugin of Cytoscape 3.7.1 (Figure 3B). Among these 14 
DEGs, SOX9 was upregulated and the remaining 13 DEGs 
(FN1, COL1A2, COL3A1, MMP3, MMP13, MMP14, 
POSTN, VCAN, TGFB1, LUM, CD44, ITGB1, and ITGB2) 

were downregulated.
After removing above outliers, PPI network analysis 

was also performed (Figure S2A). Thirteen DEGs were 
identified by the MCODE plugin of Cytoscape 3.7.1 
(Figure S2B). Among these 13 DEGs, SOX9 and ACTB 
were upregulated and the remaining 11 DEGs (COL1A1, 
COL1A2, COL3A1, MMP3, MMP13, MMP14, POSTN, 
VCAN, TGFB2,  TGFB1,  LUM ,  and ITGB1 )  were 
downregulated.

Clinical significance analysis

UALCAN was used to compare the expression levels of 
the 14 DEGs in clinical BC samples. Firstly, the expression 
levels of the 14 DEGs between 114 normal breast tissues 
and 1,097 primary BC tissues from breast invasive 
carcinoma dataset of TCGA database was compared. The 
results showed upregulation of FN1, COL1A2, COL3A1, 
MMP3, MMP13, MMP14, POSTN, VCAN, TGFB1, and 
LUM, and downregulation of CD44, SOX9, and ITGB1 in 
the primary BC samples compared to the normal breast 
tissue samples (Figure 4). The differences in the expression 
levels of the 14 DEGs between normal breast tissues and 
different BC subtypes were then analyzed. The results 
showed upregulation of FN1, COL1A2, COL3A1, MMP3, 
MMP13, MMP14, POSTN, VCAN, and TGFB1 in all 
the subtypes of BC, and upregulation of LUM in the 
luminal and HER2-positive BC tissue samples (Figure 5). 
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Furthermore, SOX9 and ITGB1 were downregulated in all 
subtypes of BC, whereas CD44 was downregulated in the 
luminal and TNBC tissue samples (Figure 5). Finally, the 

differences in the gene expression levels of the 14 DEGs 
between 83 HER2-negative MBC and 9 HER2-positive 
MBC tissue samples was compared. The results showed 
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higher expression of FN1, COL1A2, COL3A1, and POSTN 
and reduced expression of CD44 in the HER2-positive 
MBC tissue samples compared to the HER2-negative MBC 
tissue samples (Figure 6). The other 9 candidate genes had 
no differences between HER2-positive MBC and HER2-
negative MBC tissue samples in current study (Figure S3).

Kaplan-Meier survival curve analysis was performed to 
determine the differences in the overall survival (OS) and 
relapse-free survival (RFS) of the 1,273 HER2-positive BC 
patients based on the expression levels of the 14 candidate 
genes. HER2-positive patients with lower expression of 
CD44 showed significantly lower OS (P=0.011, Figure 7A) 
than those with high CD44 expression. Furthermore, OS 
rates were significantly lower for the HER2-positive BC 
patients with higher expression levels of COL1A2 (P=0.098, 
Figure 7B), MMP14 (P=0.52, Figure 7C), POSTN (P=0.14, 
Figure 7D), and SOX9 (P=0.21, Figure 7E) compared to 
those with lower expression of the corresponding genes. 
HER2-positive patients with lower expression of CD44 also 
showed significantly lower RFS (P=0.00061, Figure 8A) than 
those with high CD44 expression. Furthermore, RFS rates 
were also significantly lower for the HER2-positive BC 
patients with higher expression levels of COL1A2 (P=0.024, 
Figure 8B), MMP14 (P=0.021, Figure 8C), POSTN (P=0.006, 
Figure 8D), and SOX9 (P=0.0093, Figure 8E) compared to 
those with lower expression of the corresponding genes. 
The survival outcomes of the HER2-positive patients did 
not show any statistically significant differences based 

on the differential expression levels of the remaining 9 
candidate genes.

Discussion

Nearly 30–50% of patients with MBC develop BM (2,3). 
Furthermore, the risk of BM is higher in patients with 
HER2-positive/hormone receptor (HR)-negative and 
TNBC (3). The mortality rate is 50% for HER2-positive 
BC patients with BM progression (18). In previous studies, 
researchers fully elucidated the gene expression patterns of 
BCBM (31,32). However, their results are not independent 
of HER2 status which will affect the gene expression 
profiles and management strategies. Although Kuroiwa 
et al. (33) has explored the expression signature of BM in 
HER2-positive BC, the screening processes are based on 
cell line and mouse xenograft which are different from the 
microenvironment of human BCBM. One study based on 
bioinformatic analysis has identified some hub genes in 
BM of HER2 positive BC (34). However, the genes they 
screened are not verified by data from other databases, 
to some extent leading to unreliability of their clinical 
application.

In present study, microarray analysis of a GEO 
BC dataset identified 1,056 DEGs, including 767 
downregulated genes and 289 upregulated genes between 
BM tissues of HER2-positive BC and primary BC tissues. 
Functional enrichment analysis of the DEGs showed 
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enrichment of pathways related to ECM organization, cell 
adhesion, and collagen fibril organization. Furthermore, 
14 hub genes were identified as candidate genes regulating 
BM by the hierarchical clustering and PPI network analysis 
of the DEGs. Among these, SOX9 was upregulated and 
the remaining 13 DEGs were downregulated. PCA plot 
was also performed, and the BCBM group and primary 
BC group displayed different gene patterns. After removed 
one outliner in BCBM group and three outliers in primary 
BC group, GO analysis and KEGG pathway analysis was 
performed, and PPI network was constructed again. As 
functional enrichment is largely consistent, and most of the 
hub genes are overlapped, outlier samples were considered 
to be caused by tumor heterogeneity.

C D 4 4  i s  a n  i n t e g r a l  m e m b r a n e  p r o t e i n  t h a t 
plays a pivotal role in cellular signaling and cell-cell 
communication, and also acts as a link between the ECM 
components and the intracellular cytoskeletal proteins 
(35,36). CD44 is a commonly used cancer stem cell (CSC) 
marker. CD44 overexpression is associated with cancer cell 
proliferation, metastasis, invasion, migration and stemness, 
and tumor resistance to chemotherapy and/or radiotherapy 
in several cancers (37). The relationship between CD44 
expression levels and the clinicopathological features 
and survival outcomes of BC patients is not clear. In the 

present study, CD44 expression was significantly lower 
in the HER2-positive BCBM patients compared to the 
primary HER2-positive BC patients. Furthermore, CD44 
was downregulated in BC, especially in the luminal BC 
and TNBC. Moreover, CD44 expression was significantly 
lower in the HER2-positive MBC compared to the HER2-
negative MBC. OS and RFS rates were significantly worse 
for HER2-positive BC patients with low CD44 expression 
compared to those with higher CD44 expression.

The metastatic cascade involves local invasion through 
the basement membrane and the surrounding ECM, 
intravasation into the vessel or the lymphatic vessels, 
and subsequent dissemination to the distant sites (38). 
Epithelial-mesenchymal transition (EMT) and ECM 
remodeling are required for the initiation of cancer 
metastasis (39). Collagen is a major component of the 
ECM that is also involved in the development of human 
placenta (40). Matrix metalloproteinases (MMPs) are a 
family of calcium and zinc dependent proteases that play 
a key role in degrading the ECM proteins (41). MMP13 was 
first identified in BC as a key player in the activation cascade 
of the extracellular MMPs and ECM degradation (42).  
MMP13 promotes the initiation, growth, migration, and 
invasion of BC cells and is associated with aggressive BC 
phenotypes and poorer survival outcomes (43,44). In the 
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animal models, MMP13 promoted lung metastasis and 
played a key role in the differentiation and activation of 
osteoclasts during BM (45,46). MMP3 is another MMP 
that is downregulated in BCBM compared to the primary 
BC tissues (47). However, MMP3 activity was higher in 
metastatic brain tissues compared to the normal brain 
tissues (48). The expression levels of MMP3 and MMP14 
in brain-derived clones of MDA-MB-231 did not show 
significant differences compared to the normal brain  
tissues (49). MMP14 (also known as membrane type 1-MMP) 
is an activator of MMP2 and promotes cancer cell invasion, 
metastasis and angiogenesis by degrading ECM and cell 
adhesion proteins (50,51). MMP14 is downregulated in 
BCBM and associated with metastasis and poorer survival 
outcomes (52). In the present study, MMP3, MMP13, and 
MMP14 were upregulated in all the subtypes of BC, and 

their expression levels were independent of the HER2 status 
in MBC. HER2-positive BC patients with high MMP14 
expression were associated with poorer RFS.

COL1A2 and COL3A1 encode the α2 chain of type 
I collagen and the α1 chain of types I and III collagens, 
respectively; moreover, type I and III collagens are 
important components of the ECM (53,54). Type I and III 
collagens participate in tumor invasion and progression 
(54-56). Furthermore, aberrant expression of COL1A2 is 
associated with survival outcomes in several cancers (57-61). 
The upregulation of COL1A2 and COL3A1 is associated 
with poor survival outcomes in patients with ER-positive 
BC (62,63). Furthermore, the expression levels of COL1A2 
and COL3A1 are upregulated in BC after radiotherapy (64). 
A previous study showed that low expression of COL3A1 
correlated with metastasis in patients with BCBM and poor 
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survival outcomes (52). In this current study, COL1A2 and 
COL3A1 were downregulated in HER2-positive BCBM 
patients. However, further investigation showed that 
COL1A2 and COL3A1 were upregulated in all the subtypes 
of BC. Among MBC patients, HER2-positive BC group 
showed higher expression levels of COL1A2 and COL3A1. 
Furthermore, HER2-positive BC patients with higher 
COL1A2 expression showed poor RFS and OS compared to 
those with lower COL1A2 expression.

ECM proteins and secretory factors mediate tumor-
stromal interactions (65). POSTN, also known as OSF-2, 
is a secretory cell-adhesion glycoprotein in the ECM that 
plays a critical role in tumor cell proliferation, adhesion, 
migration, and EMT (66). POSTN is also implicated in 
cancer cell stemness and regulates tumor angiogenesis, 
lymph-angiogenesis, and distant metastases (67,68). POSTN 

is highly expressed in the tumor stromal cells such as the 
cancer-associated fibroblasts in BC, and its upregulation 
correlates with tumor malignancy and shorter survival 
rates of the IDC patients (68-70). A positive feedback loop 
between POSTN and TGF-β promotes and maintains the 
stemness of cancer cells, and is associated with increased 
invasion and worse survival outcomes (71-73). In the GEO-
BC dataset, POSTN and TGFB2 were downregulated in the 
HER2-positive BM. However, in further studies, POSTN 
was upregulated in all the subtypes of BC.

SOX9 is a member of the SOX family of transcription 
factors and is associated with tumorigenesis and poor 
survival outcomes in solid tumors (74). In non-small cell 
lung cancer (NSCLC), tumor-associated macrophages 
(TAMs) secrete TGF-β, which induces SOX9 expression 
via the c-Jun/SMAD3 pathway and subsequently promotes 
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tumor progression and metastasis (75). SOX9 promotes BC 
growth, proliferation, migration, invasion, and metastasis 
by directly regulating genes involved in cellular apoptosis 
and EMT (76-78). Sox9 upregulation is associated with the 
CD44+/CD24−/low phenotype and poor prognosis in BC (79). 
The upregulation, deacetylation, and nuclear localization of 
SOX9 is associated with tamoxifen resistance in BC (80). In 
the GEO dataset, SOX9 was upregulated in BM samples of 
HER2-positive BC. However, SOX9 was downregulated in 
all the subtypes of BC, and its expression was independent 
of the HER2 status. Furthermore, HER2-positive BC 
patients with higher SOX9 expression were associated with 
poor RFS and OS than those with low SOX9 expression.

FN1  promotes EMT and cancer cel l  migration 
(81,82). LUM inhibits MMPs and BC progression, and 
is co-expressed with COL1A2 in BCBM (83). VCAN is 
associated with poor OS in BC (84-86). This study showed 
that the expression levels of FN1, LUM, and VCAN were 
significantly lower in BM samples of HER2-positive BC 
than the primary BC patients. However, further verification 
demonstrated upregulation of FN1, LUM, and VCAN 
in primary BC tissues. Furthermore, FN1 was highly 
expressed in HER2-positive MBC compared to the HER2-
negative MBC patients. ITGB1, the β1 integrin subunit, 
mediates initiation, growth, and progression of BC (87). 
In the present study, ITGB1 was downregulated in primary 
BC independent of the subtypes and in the HER2-positive 
BCBM patients.

Several downregulated genes in HER2-positive BCBM 
patients were upregulated in majority of the BC subtypes 
and were associated with poorer survival outcomes. This 
suggested that the tumor microenvironment was different 
in patients with BM compared to those without BM. 
Previous studies showed that COL1A2, COL3A1, MMP3, 
MMP14, MMP2, and FN were downregulated in MBC 
samples compared to the primary BC samples. These genes 
are potentially involved in the interactions of the MBC cells 
with the microenvironment and may be necessary for the 
metastasis to the lymph nodes and their survival in the new 
microenvironment (88-91). Another hypothesis is that some 
of these genes are mainly expressed in the stromal tissues. 
However, stromal tissue levels are significantly lower in the 
brain compared to the primary BC. Furthermore, patients 
with LUM-positive cancer cells were associated with longer 
survival rates, but patients with LUM-positive stromal 
tissues were associated with shorter survival rates (92). This 
suggested different biological roles for some EMT and 
ECM genes in the stroma and the cancer cells, especially in 

the context of BM.

Conclusions

In conclusion, 1,056 DEGs (767 downregulated and 289 
upregulated) and 14 hub genes were identified in BM 
samples of HER2-positive BC. Furthermore, CD44, 
COL1A2, MMP14, POSTN, and SOX9 were associated 
with BM in BC and survival outcomes of patients with 
HER2-positive BC. These genes played a significant role 
in the metastatic tumor microenvironment. However, as 
present results are based on a single database, bias is existed 
in current investigation. In addition, above hub genes are 
components of the stromal compartment which are required 
for normal tissue homeostasis. Although it has been known 
that the homeostasis is re-established during BM, it is still 
difficult to find proper way to keep balance between BM 
management and tissue homeostasis when targeting the 
hub genes. Further studies are still required to decipher the 
biological roles and mechanisms of these hub genes in BM 
of HER2-positive BC patients.
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Supplementary

Figure S1 GO and KEGG pathway enrichment analysis of DEGs in BCBM after removing the outliers. (A) GO CC of DEGs. (B) GO 
BP of DEGs. (C) GO MF of DEGs. (D) KEGG of DEGs. ICERM, integral component of endoplasmic reticulum membrane; ER-GIC, 
endoplasmic reticulum-Golgi intermediate compartment; PRPCP, positive regulation of protein catabolic process; NRTCRSP, negative 
regulation of T cell receptor signaling pathway; PRPCA, positive regulation of protein complex assembly; NRGE, negative regulation of 
gene expression; NRPMTRP2P, negative regulation of pri-miRNA transcription from RNA polymerase II promoter; miRNA, microRNA; 
PROD, positive regulation of osteoclast differentiation; RACR, regulation of actin cytoskeleton reorganization; NRTDT, negative 
regulation of transcription; DNA-templated; PRBM, positive regulation of bone mineralization; RSGMST, regulation of small GTPase 
mediated signal transduction; CRTMF, cellular response to tumor necrosis factor; C-MSP, chemokine-mediated signaling pathway; PRCM, 
positive regulation of cell migration; PRAP, positive regulation of apoptotic process; EASP, extrinsic apoptotic signaling pathway; NRSA-
DCP, negative regulation of substrate adhesion-dependent cell spreading; PRNTFA, positive regulation of NF-kappaB transcription factor 
activity; PRTCA, positive regulation of T cell activation; PDGFB, platelet-derived growth factor binding; EMSC, extracellular matrix 
structural constituent; PSTPA, protein serine/threonine phosphatase activity; G-N EFA, guanyl-nucleotide exchange factor activity; 
EMSCCTS, extracellular matrix structural constituent conferring tensile strength; ETTA, efflux transmembrane transporter activity; 
PNMD, pathways of neurodegeneration-multiple diseases; A-G SPDC, AGE-RAGE signaling pathway in diabetic complications; AGE, 
advanced glycation end product; RAGE, receptor for AGE; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
DEGs, differentially expressed genes; BCBM, breast cancer with brain metastases; CC, cellular component; BP, biological process; MF, 
molecular function.
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Figure S2 PPI network and the most significant module of DEGs after removing the outliers. (A) PPI network of DEGs. (B) Most 
significant modules obtained from PPI network. PPI, protein-protein interaction; DEGs, differentially expressed genes.

Figure S3 Comparation of 9 candidate hub genes expression between HER2-positive and negative MBC via UALCAN. (A) MMP3 
expression level. (B) MMP13 expression level. (C) MMP14 expression level. (D) VCAN expression level. (E) TGFB1 expression level. (F) 
LUM expression level. (G) SOX9 expression level. (H) ITGB1 expression level. (I) TGFB2 expression level. RPKM, reads per kilobase per 
million mapped reads; HER2, human epidermal growth factor receptor 2; NS, no significance; MBC, metastatic breast cancer.


