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Introduction

High-throughput molecular analysis is a well-known 
technology that plays an important role in exploring 
biological questions in many species, especially in human 
genomic studies. Over the past 20 years, gene expression 
profiling, a revolutionary technique, has been widely used 
for genomic identification, genetic testing, drug discovery, 
and disease diagnosis, among other things (1). The field of 
genomics and proteomics research has undergone neoteric 
fluctuations as a result of next-generation sequencing 
(NGS), a paradigm-shifting technology that provides higher 
accuracy, larger throughput and more applications than the 
microarray platform (2-4). The use of massively parallel 
sequencing has increasingly been the object of study in 
recent years. The NGS technologies are implemented for 
several applications, including whole genome sequencing, de 
novo assembly sequencing, resequencing, and transcriptome 

sequencing at the DNA or RNA level. For instance, de novo 
assembly sequencing assembles the genome of a particular 
organism without a reference genome sequence (5), which 
may lead to a better understanding at the genomic level and 
may assist in predicting genes, protein coding regions, and 
pathways. In addition, resequencing the organism with a 
known genome can help in understanding the relationship 
between genotype and phenotype and identify the 
differences among reference sequences (6,7). In addition, 
NGS technologies have been widely used to analyze small 
RNAs (8-10), including identification of differentially 
expressed micro RNAs (miRNAs), prediction of novel 
miRNAs, and annotation of other small non-coding RNAs. 

Currently, there are several companies implementing different 
NGS technologies, such as Illumina (http://www.Illumina.com), 
Roche (http://www.454.com), ABI Life Technologies 
(http://www.lifetechnologies.com), Helicos Biosciences 
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(http://www.helicosbio.com), Pacific Bioscience (http://
www.pacificbiosciences.com), and Oxford Nanopore (http://
www.nanoporetech.com). Table 1 provides a list of some 
popular NGS instruments and summarizes their respective 
pros and cons. 

In this review, we begin by discussing preprocessing 
procedures, i.e., converting raw images into a final set of 
sequence reads. We then provide an overview of analytic 
pipelines and recommend some bioinformatics tools that 
were recently proposed in studies using next-generation 
DNA and RNA sequencing. Finally, we discuss the small 
RNA sequencing analytic workflow, annotation databases, 
and discovery of novel small RNAs by NGS technologies. 

DNA sequencing data analysis

Preprocessing procedures

During each run from any NGS platform, several terabytes 
of raw image data are generated and converted to the 
FASTQ format files for further analysis. Image analysis 
uses raw images to locate clusters, export the positions 
and intensity, and estimate the noise for each cluster. The 
base-calling step identifies the sequence of base reads from 
each cluster and filters uncertain or low quality reads. If 
multiple samples are loaded and run on the same lane, a 
demultiplexing step is required to identify each sample 
by its individual index sequences (called “barcodes”). The 
CASAVA package developed by Illumina handles these 
preprocessing procedures; likewise, the Bioscope package 
developed by ABI can be used for preprocessing data in 
SOLiD format.

Read alignment

The read alignment in genomics, also called reference-based 
assembly (11), is utilized by read alignment tools (Table 2) 
to align several hundred or thousand millions of reads back 
to an existing reference genome. MAQ (12) is based on the 
idea of a “spaced seed indexing” strategy to map reads to a 
reference sequence. BFAST (13) is known for its speed and 
accuracy on mapping. Novoalign (14) uses the Needleman-
Wunsch algorithm and affine gap penalties to find the 
globally optimum alignment. Burrows-Wheeler Aligner 
(BWA) (15) is based on Burrows-Wheeler Transformation 
indexing (59), including the BWA-short algorithm that 
queries short reads up to ~200 bp with a low error rate and 
the BWA-SW algorithm that queries long reads with a 
high error rate. SOAP3, the most recent version of SOAP, 

supports Graphics Processing Unit (GPU)-based parallel 
alignment and takes less than 30 seconds for a one-million-
read alignment onto the human reference genome (16).

De novo assembly

The de novo approaches particularly concentrate on grouping 
short reads into significant contigs and assembling these 
contigs into scaffolds to reconstruct the original genomic 
DNA for novel species. The crucial challenge of de novo 
assembly is that the read length is shorter than repeats in 
the genome (60). To overcome this problem, three strategies 
have been proposed (61). First, Warren et al. (17) developed 
VCAKE, a modification of simple k-mer extension, which 
is based on the greedy graph approach to assemble millions 
of reads using high-depth coverage to reduce the error 
rate. Second, Newbler et al. (18) used the overlap/layout/
consensus method to deal with the ambiguous reads within 
the 454 platform. Lastly, Velvet, a well-known assembler, 
is applied by the extension of useful graph simplification to 
reduce the path complexity of the de Bruijn graph (19).

Single nucleotide variant (SNV) detection

After assembling the reads, the next step in analytic pipelines 
is using a tool to call SNVs for identification of genetic 
variants. GATK (20) processes re-alignment insertions/
deletions (indels), performs base quality recalibration, calls 
genotypes, and distinguishes true segregating variation 
by machine learning to discover and genotype variations 
among multiple samples. SAMtools (21) computes 
genotype likelihood to call SNVs or short indels. VarScan/
VarScan2 (22,23) employs heuristic methods and a statistical 
test to detect SNVs and indels. SomaticSniper (24) and 
JointSNVMix (25) use the genotype likelihood model of 
MAQ and two probabilistic graphical models, respectively, to 
assess the probability of the differences between tumor and 
normal genotypes.

Structural variation detection

While SNVs are considered a small genetic change, 
“structural variation” generally implies a large DNA 
alteration, approximately 1 kb to 3 Mb in length. 
Structural variation includes indels, copy-number variants 
(CNVs), inversions, and translocations (62). A powerful 
software module for structural variation detection called 
BreakDancer provides genome-wide screening for large 
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Table 2 Tools for next-generation sequencing data analysis

Category Tool Platform Reference

DNA-seq

Alignment/mapping MAQ Illumina/ABI (12)

BFAST Illumina/Roche/ABI/Helicos (13)

Novoalign Illumina/Roche (14)

BWA Illumina/ABI (15)

SOAP3 Illumina/Roche/ABI (16)

De novo assembly VCAKE Illumina/Roche (17)

Newbler Roche (18)

Velvet Illumina/Roche/ABI (19)

SNV detection GATK Illumina/Roche/ABI (20)

SAMtools Illumina/Roche (21)

VarScan/VarScan2 Illumina/Roche/ABI (22,23)

SomaticSniper Illumina (24)

JointSNVMix Illumina (25)

Structural variation detection BreakDancer Illumina/Roche/ABI (26)

VariationHunter Illumina (27)

SVDetect Illumina/ABI (28)

PEMer Illumina/Roche/ABI (29)

RNA-seq

De novo transcriptome assembly Trinity Illumina/Roche/ABI* (30)

Trans-AbySS Illumina/Roche/ABI (31)

Oases Illumina/Roche/ABI (32)

Alignment/mapping Bowtie/Bowtie2 Illumina/Roche/ABI (33,34)

TopHat Illumina/Roche/ABI (35)

Counting reads per transcript HTSeq Illumina/Roche/ABI (36)

Cufflinks Illumina/Roche/ABI (37-40)

Normalization, bias correction, 

and statistically testing differential 

expression

DESeq Illumina/Roche/ABI (41)

baySeq Illumina/Roche/ABI (42)

edgeR Illumina/Roche/ABI (43)

Cufflinks Illumina/Roche/ABI (37-40)

Small RNA-seq

Adapter trimming cutadapt Illumina/Roche/ABI (44)

Flicker Illumina (45)

FASTX Clipper Illumina (46)

scythe Illumina (47)

Quality control NGS QC Toolkit Illumina/Roche (48)

FASTQ Quality Filter Illumina (46)

Quality Viewer FastQC Illumina/Roche (49)

qrqc Illumina/Roche/ABI (50)

Alignment/mapping Bowtie/Bowtie2 Illumina/Roche/ABI (33,34)

Table 2 (continued)
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structural variants and detects small indels by integrating 
evidence across multiple samples and libraries (26). 
Additional tools are available, such as VariationHunter, 
which predicts structural variations based on the maximum 
parsimony principle (27); SVDetect, a chromosomal 
visualization tool that supports both paired-end and 
mate-pair sequencing data to predict intra- and inter-
chromosomal rearrangements (28); and PEMer, which 
includes three modules for detection, simulation and 
annotation of structural variations (29).

RNA sequencing data analysis

Besides exploring the human genome with DNA sequencing 
(DNA-seq) analysis, high-throughput sequencing has 
been applied to study RNA transcripts, typically referred 
to as RNA-seq or transcriptome-seq, and has provided 
comprehensive knowledge of both genomics and genetics. 
After the identical preprocessing procedures as in DNA-
seq data analysis, RNA-seq data can be used for de novo 
transcriptome assembly, expression profiling analysis, 
variant calling and transcriptomic epigenetics.

De novo transcriptome assembly

While de novo DNA assembly is aimed toward building 
genomic scaffolds for novel species without reference, 
de novo assembly of RNA-seq data sketches an overview 
and extracts clues to the “transcriptome.” Current de 
Bruijn graph-based transcriptome assemblers include 
Trinity (30), featuring three-step assembly (Inchworm 
for assembly, Chrysalis for clustering, and Butterfly for 
processing); Trans-AbySS (31), addressing variation in local 
read densities; and Oases (32), which introduces dynamic 
error removal adapted to RNA-seq expression levels. The 
assembled long RNA contigs can then be annotated with 

respect to closely related species to fully explore the genome 
using Basic Local Alignment Search Tool (BLAST), and 
may serve as a reference for further abundance profiling.

Expression profiling analysis

The predominant application of RNA-seq is currently to 
profile gene expression levels and identify differentially 
expressed transcripts among groups of samples. Typical analysis 
of RNA-seq data for this purpose includes procedures of 
mapping reads against reference, counting reads per transcript, 
and statistical testing for differential expression (Figure 1).

In mapping RNA-seq reads, short sequencing reads 
(FASTQ files) are aligned against the reference sequences 
(FASTA files), such as annotated genome sequences from 
the University of California, Santa Cruz (UCSC), the 
National Center for Biotechnology Information (NCBI), 
and Ensembl for well-studied species, or against de novo 
assembled RNA transcripts for novel species. Alignment 
programs include Bowtie (33), whose ultrafast and 
memory-efficient method is based on Burrows-Wheeler 
Transformation indexing (59); Bowtie2 (34), which is 
improved for finding longer or gapped alignments; and 
TopHat (35), which adds to Bowtie the capability of 
integrating known and identifying novel splice junctions. 
These software packages summarize the aligned results 
into BAM files, which can be visualized with Integrative 
Genomics Viewer (63,64).

Taking mapped RNA-seq reads, a Python-based tool, 
HTSeq (36), extracts read counts for each transcript. The 
read counts represent raw expression levels of transcripts 
and are used for statistically testing differential expression 
among samples subjected to different drug treatments or 
taken from patients with and without a certain disease. 
Realizing that the expression distribution of RNA-seq 
data is different from conventional microarrays (65,66), 

Table 2 (continued)

Category Tool Platform Reference

miRNA prediction DSAP Illumina/Roche/ABI (51)

miRanalyzer Illumina/Roche/ABI (52)

miRDeep/miRDeep2 Illumina/Roche/ABI (53,54)

MIReNA Illumina/Roche/ABI (55)

mirExplorer Illumina/Roche/ABI (56)

miRTRAP Illumina/Roche/ABI (57)

miRDeep-P Illumina/Roche/ABI (58)

*If data are strand-specific, the reads should be oriented identically to that reported by Illumina
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statisticians and biologists have developed tools for 
normalizing, bias correcting, and statistically testing 
RNA-seq read counts of transcripts based on Poisson or 
negative binomial (NB) distributions. DESeq (41), an R/

Bioconductor package based on the NB distribution with 
adjustments by local regression; baySeq (42), which employs 
NB statistics and empirical Bayesian approaches; and 
edgeR (43), which uses the over-dispersed Poisson model 

Figure 1 Steps for analytic strategies of DNA-seq and RNA-seq
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Figure 2 Steps for analytic strategies of small RNA-seq
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combined with empirical Bayesian methods; are three 
frequently used tools for detecting differential expression of 
transcripts among a set of sequencing samples. In addition 
to the mentioned tools, the Cufflinks package (37-40) 
provides integrated solutions for assembling transcripts, 
estimating the abundances of transcripts, and testing 
differential expression. For further biological insights, the 
differential expression of transcripts can be analyzed for 
Gene Ontology and pathway enrichment, with methods 
identical to those implemented in conventional microarray 
data analyses.

Variant calling and transcriptomic epigenetics

As an alternative to whole-genome DNA sequencing 
for calling variants (i.e., mutations and single nucleotide 
polymorphisms), RNA sequencing provides a cost-efficient 
way for discovering coding variants. Several studies have 
successfully identified variants in vertebrates from RNA-
seq data (67-69). In addition to calling variants upon 
alignment to reference sequences with SAMtools (21), Hill 
et al. recently proposed the mutation mapping analysis 
pipeline for pooled RNA-seq (MMAPPR) (70). With three-
step analysis of allele frequency distance calculation, signal 
processing, and candidate SNP identification, MMAPPR 
was capable of identifying novel mutants that were 
biologically validated in zebra fish (70).

Transcriptomic epigenetics via RNA-seq has attracted 
growing research focus. Efforts in novel research areas, 
such as transcription start site-associated RNAs (71), 
promoter-associated RNAs (72), transcription-initiation 
RNAs (tiRNAs) (73), and long interspersed non-coding 
RNAs (lincRNAs) (74,75), may facilitate investigations into 
complex transcriptional regulation (76). However, more 
bioinformatic and biostatistical input is required before 
automated tools for complicated RNA-seq data analysis 
come into practice (77).

Small RNA sequencing

Many classes of small RNAs (sRNAs), such as miRNA, 
piwi-interacting RNA (piRNA), and small interfering RNA 
(siRNA), have been reported to play an important role 
in post-translational regulation of gene expression. Next 
generation small RNA sequencing (sRNA-seq) technology 
has now become a gold standard for both sRNA discovery 
and sRNA profiling, because it is able to sequence the entire 
complement of sRNAs in a sample with high sensitivity. 

The following describes a typical workflow and the tools 
involved.

General workflow

Though the sRNA-seq workflow depends on the application 
and sequencing platform one uses, some major steps shown 
in Figure 2 are generally followed. A library consisting of 
raw cDNA reads is obtained directly after sequencing. 
First, reads containing sequences of adapters should be 
trimmed off by using either an official toolkit provided by 
the company of the sequencer, such as Flicker by Illumina, 
or third-party toolkits, such as FASTX Clipper of FASTX 
Toolkit (46), scythe (47), or cutadapt (44). Second, reads 
having too low overall quality should be discarded using 
tools like FASTQ Quality Filter of the FASTX Toolkit 
or the NGS QC Toolkit (48). Next, tools like FastQC (49) 
or qrqc (50) in R/Bioconductor are used to check the 
quality statistics visually. Finally, since NGS may produce 
erroneous reads, the filtered reads should be validated by 
aligning to a reference genome database. For short read 
alignment, Bowtie/Bowtie2 are commonly used because 
they implement an optimized, memory-efficient algorithm 
and provide many built-in indexes for the genome database 
reference (33,34).

Some databases are commonly used in sRNA-seq and 
should be mentioned at the outset. Rfam is an open-access, 
annotated database providing information about families of non-
coding RNAs, such as tRNA, rRNA, and snoRNA (78). miRBase 
is a database that contains sequences and annotations of all 
known miRNAs across species; the newest version, miRBase 
19, contains around 25,000 mature products in nearly 200 
species (79). These two databases help one identify known 
sRNA reads and one can later choose to either keep these 
reads or discard them depending on the purpose of the 
sequencing.

Small RNA prediction

Discovery of new sRNAs is highly facilitated by NGS 
technology via its massively parallel high throughput of 
sequencing, which makes it possible to detect sRNAs 
with lower expression that are hard to find by traditional 
Sanger sequencing. Methods for identification of miRNAs 
have been well developed in recent years. There are many 
distinct algorithms for miRNA prediction, which are 
implemented in tools such as miRTRAP (57), MIReNA (55),  
miRExplorer (56), miRAnalyzer (52), miRDeep/miRDeep2 



42 Lee et al. NGS technologies in genomic research

© Pioneer Bioscience Publishing Company. All rights reserved. Transl Cancer Res 2013;2(1):33-45www.thetcr.org

(53,54), and DSAP (51). These tools are mainly designed 
for animal species. For miRNA prediction in plants, 
miRDeep-P, a derivative of miRDeep, has been proposed (80). 
sRNA-seq is also useful in virology (81). Due to the high 
mutation rates of viruses, sRNA-seq can assist with in silico 
reconstruction of viral genomes from the antiviral RNAi 
response and identify virus-derived small interfering RNAs 
(vsiRNAs) based on the reference sequence (82). Since 
prediction tools continue to evolve at a fast pace, there is 
no consensus about which tool is most preferred, and while 
several comparisons have been made in the aforementioned 
references, we will defer to the readers to choose the tool 
most suitable for their situation (83,84). 

miRNA characterization

Profiling of miRNAs is another important sRNA-seq 
application. It has been reported that the miRNA signature 
can serve as a biomarker for diseases, tissues, or stages 
of cell development (85,86) and has been used for drug 
development (58). Currently, microarrays, quantitative 
real-time RT-PCR, and sRNA-seq are all widely used for 
miRNA characterization, and their attributes have been 
described in detail (87). sRNA-seq provides high accuracy 
for distinguishing miRNAs with similar sequences, such 
as isomiRs, and can identify novel miRNAs at the same 
time. However, it should be pointed out that there are 
reproducible systematic biases toward different protocols 
of miRNA library construction due to different usage of 
RNA ligase (88,89). This bias can be eliminated by pooling 
different adapters (90). Thus, one should be careful about 
the protocol a dataset uses when performing differential 
expression analysis across various datasets. Quantitative 
RT-PCR can be used as a secondary means of absolute 
quantification.

Future perspectives

NGS technologies provide opportunities for understanding 
unknown species and complex diseases. Although different 
companies implement different platforms with distinctive 
features and advantages, depend on the number of reads 
and the read length to ensure assembly quality and accuracy. 
Therefore, an important issue for future research will be 
the improvement of methods used for analysis of the huge 
amount of data produced by NGS. The goals will be to 
increase the accuracy of assembly sequencing, reduce the 
processing time, and fine-tune the efficiency of algorithms 

for analysis. In order to make the best use of NGS data, the 
design of state-of-the-art bioinformatics pipelines to extract 
meaningful biological insights will be a significant topic in 
the following years. Ultimately, NGS could reveal human 
genomic information and help to elucidate the function of 
the genome, which may provide therapeutic regimens for 
personalized medicine in the future.
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